Integrated multi-wavelength control of an ion qubit

被引:192
作者
Niffenegger, R. J. [1 ]
Stuart, J. [1 ,2 ]
Sorace-Agaskar, C. [1 ]
Kharas, D. [1 ]
Bramhavar, S. [1 ]
Bruzewicz, C. D. [1 ]
Loh, W. [1 ]
Maxson, R. T. [1 ]
McConnell, R. [1 ]
Reens, D. [1 ]
West, G. N. [2 ]
Sage, J. M. [1 ,2 ]
Chiaverini, J. [1 ,2 ]
机构
[1] MIT, Lincoln Lab, 244 Wood St, Lexington, MA 02173 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.1038/s41586-020-2811-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors(1-4). Trapped atomic ions form the basis of high-fidelity quantum information processors(5,6) and high-accuracy optical clocks(7). However, current implementations rely on free-space optics for ion control, which limits their portability and scalability. Here we demonstrate a surface-electrode ion-trap chip(8,9) using integrated waveguides and grating couplers, which delivers all the wavelengths of light required for ionization, cooling, coherent operations and quantum state preparation and detection of Sr+ qubits. Laser light from violet to infrared is coupled onto the chip via an optical-fibre array, creating an inherently stable optical path, which we use to demonstrate qubit coherence that is resilient to platform vibrations. This demonstration of CMOS-compatible integrated photonic surface-trap fabrication, robust packaging and enhanced qubit coherence is a key advance in the development of portable trapped-ion quantum sensors and clocks, providing a way towards the complete, individual control of larger numbers of ions in quantum information processing systems.
引用
收藏
页码:538 / +
页数:12
相关论文
共 32 条
  • [1] Nanotaper for compact mode conversion
    Almeida, VR
    Panepucci, RR
    Lipson, M
    [J]. OPTICS LETTERS, 2003, 28 (15) : 1302 - 1304
  • [2] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [3] Ultra-low-loss high-aspect-ratio Si3N4 waveguides
    Bauters, Jared F.
    Heck, Martijn J. R.
    John, Demis
    Dai, Daoxin
    Tien, Ming-Chun
    Barton, Jonathon S.
    Leinse, Arne
    Heideman, Rene G.
    Blumenthal, Daniel J.
    Bowers, John E.
    [J]. OPTICS EXPRESS, 2011, 19 (04): : 3163 - 3174
  • [4] 27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18
    Brewer, S. M.
    Chen, J-S
    Hankin, A. M.
    Clements, E. R.
    Chou, C. W.
    Wineland, D. J.
    Hume, D. B.
    Leibrandt, D. R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (03)
  • [5] Measurement of ion motional heating rates over a range of trap frequencies and temperatures
    Bruzewicz, C. D.
    Sage, J. M.
    Chiaverini, J.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [6] Trapped-ion quantum computing: Progress and challenges
    Bruzewicz, Colin D.
    Chiaverini, John
    McConnell, Robert
    Sage, Jeremy M.
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [7] Scalable loading of a two-dimensional trapped-ion array
    Bruzewicz, Colin D.
    McConnell, Robert
    Chiaverini, John
    Sage, Jeremy M.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] Chiaverini J, 2005, QUANTUM INFORM COMPU, V5, P419
  • [9] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [10] THIN GRATING COUPLERS FOR INTEGRATED OPTICS - EXPERIMENTAL AND THEORETICAL-STUDY
    DALGOUTTE, DG
    WILKINSON, CDW
    [J]. APPLIED OPTICS, 1975, 14 (12): : 2983 - 2998