Predicting multinomial choices using maximum entropy

被引:3
作者
Campbell, RC [1 ]
Hill, RC [1 ]
机构
[1] Louisiana State Univ, Dept Econ, Baton Rouge, LA 70803 USA
关键词
maximum entropy; generalized maximum entropy; discrete choice models;
D O I
10.1016/S0165-1765(99)00113-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
We discuss two methods for predicting outcomes using the discrete choice generalized maximum entropy (GME) estimator. Since the traditional GME formulation allows (y) over cap outside the [0, 1] interval, we specify a new GME formulation, which requires 0 less than or equal to (y) over cap less than or equal to 1. We estimate a binary choice model to compare results between our GME estimator and the traditional GME estimator. (C) 1999 Published by Elsevier Science S.A. All rights reserved.
引用
收藏
页码:263 / 269
页数:7
相关论文
共 50 条
  • [1] A maximum entropy approach to recovering information from multinomial response data
    Golan, A
    Judge, G
    Perloff, JM
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) : 841 - 853
  • [2] A Microeconomic Interpretation of the Maximum Entropy Estimator of Multinomial Logit Models and Its Equivalence to the Maximum Likelihood Estimator
    Donoso, Pedro
    de Grange, Louis
    ENTROPY, 2010, 12 (10) : 2077 - 2084
  • [3] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [4] Imposing parameter inequality restrictions using the principle of maximum entropy
    Campbell, Randall C.
    Hill, R. Carter
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2006, 76 (11) : 985 - 1000
  • [5] A Maximum Entropy Approach for Predicting Epileptic Tonic-Clonic Seizure
    Teresa Martin, Maria
    Plastino, Angelo
    Vampa, Victoria
    ENTROPY, 2014, 16 (08) : 4603 - 4611
  • [6] From Maximum Entropy to Maximum Entropy Production: A New Approach
    Virgo, Nathaniel
    ENTROPY, 2010, 12 (01) : 107 - 126
  • [8] Predicting Habitat Suitability and Conserving Juniperus spp. Habitat Using SVM and Maximum Entropy Machine Learning Techniques
    Boogar, Abdolrahman Rahimian
    Salehi, Hassan
    Pourghasemi, Hamid Reza
    Blaschke, Thomas
    WATER, 2019, 11 (10)
  • [9] Productivity and returns to infrastructure using maximum entropy estimation
    Rodriguez-Valez, Jorge
    INVESTIGACIONES REGIONALES-JOURNAL OF REGIONAL RESEARCH, 2006, (08) : 123 - 139
  • [10] Semantic Chunk Annotation for questions using Maximum Entropy
    Fan, Shixi
    Zhang, Yaoyun
    Ng, Wing W. Y.
    Wang, Xuan
    Wang, Xiaolong
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 450 - 454