Acyclic Chromatic Indices of Planar Graphs with Girth At Least 4

被引:20
作者
Shu, Qiaojun [1 ]
Wang, Weifan [1 ]
Wang, Yiqiao [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Beijing Univ Chinese Med, Sch Hlth Management, Beijing 100029, Peoples R China
关键词
acyclic edge coloring; planar graph; girth; maximum degree; EDGE COLORINGS;
D O I
10.1002/jgt.21683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamcik (Math. Slovaca 28 (1978), 139-145) and later Alon et al. (J Graph Theory 37 (2001), 157-167) conjectured that a(G)+2 for any simple graph G with maximum degree . In this article, we confirm this conjecture for planar graphs of girth at least 4. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:386 / 399
页数:14
相关论文
共 20 条
[1]   Acyclic edge colorings of graphs [J].
Alon, N ;
Sudakov, B ;
Zaks, A .
JOURNAL OF GRAPH THEORY, 2001, 37 (03) :157-167
[2]   ACYCLIC COLORING OF GRAPHS [J].
ALON, N ;
MCDIARMID, C ;
REED, B .
RANDOM STRUCTURES & ALGORITHMS, 1991, 2 (03) :277-288
[3]  
Basavaraju M., ACYCLIC EDGE COLORIN
[4]   ACYCLIC EDGE-COLORING OF PLANAR GRAPHS [J].
Basavaraju, Manu ;
Chandran, L. Sunil ;
Cohen, Nathann ;
Havet, Frederic ;
Mueller, Tobias .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) :463-478
[5]   Acyclic Edge Coloring of Graphs with Maximum Degree 4 [J].
Basavaraju, Manu ;
Chandran, L. Sunill .
JOURNAL OF GRAPH THEORY, 2009, 61 (03) :192-209
[6]   Acyclic edge colouring of planar graphs without short cycles [J].
Borowiecki, Mieczyslaw ;
Fiedorowicz, Anna .
DISCRETE MATHEMATICS, 2010, 310 (09) :1445-1455
[7]  
Cohen N., 2009, ELECT NOTES DISCRETE, V34, P417, DOI [10.1016/j.endm.2009.07.069, DOI 10.1016/J.ENDM.2009.07.069]
[8]  
COHEN N., 2009, RR6876 INRIA
[9]   Some results on acyclic edge coloring of plane graphs [J].
Dong, Wei ;
Xu, Baogang .
INFORMATION PROCESSING LETTERS, 2010, 110 (20) :887-892
[10]  
Fiamcik J., 1978, Math Slovaca, V28, P139