Geometry-Based Compression of Plenoptic Point Clouds

被引:0
|
作者
Freitas, Davi R. [1 ]
Sandri, Gustavo L. [2 ]
de Queiroz, Ricardo L. [3 ]
机构
[1] Inria Rennes Bretagne Atlantique, Rennes, France
[2] Inst Fed Brasilia, Brasilia, DF, Brazil
[3] Univ Brasilia, Brasilia, DF, Brazil
关键词
Point cloud compression; plenoptic point clouds;
D O I
10.1109/MMSP55362.2022.9949107
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Plenoptic point clouds (PPC) are novel data structures that represent the light from different viewing directions in order to provide a higher degree of realism to regular point clouds. This is achieved by associating each point to multiple colors instead of a single one. Here, we present a method to efficiently compress the attributes of a PPC, consisting of a Karhunen-Loeve transform over the color attributes followed by multiple attribute coders with intra prediction capability. This compression scheme can be incorporated within the MPEG's geometry-based PCC (G-PCC) standard, using any of G-PCC's existing solutions for attribute coding. Compression performance assessment using PPCs of different spatial resolutions reveals competitive results in comparison to existing methods, such as RAHT-based or video-based PCC solutions. We believe our coder to be the new state of the art.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Standardization Status of MPEG Geometry-based Point Cloud Compression (G-PCC) Edition 2
    Zhang, Wei
    Yang, Fuzheng
    Xu, Yingzhan
    Preda, Marius
    2024 PICTURE CODING SYMPOSIUM, PCS 2024, 2024,
  • [22] Rate Control for Geometry-Based LiDAR Point Cloud Compression via Multi-Factor Modeling
    Hou, Lizhi
    Gao, Linyao
    Zhang, Qian
    Xu, Yiling
    Hwang, Jenq-Neng
    Wang, Dong
    IEEE TRANSACTIONS ON BROADCASTING, 2025, 71 (01) : 167 - 179
  • [23] Delphi: geometry-based connectivity prediction in triangle mesh compression
    Volker Coors
    Jarek Rossignac
    The Visual Computer, 2004, 20 : 507 - 520
  • [24] Delphi: geometry-based connectivity prediction in triangle mesh compression
    Coors, V
    Rossignac, J
    VISUAL COMPUTER, 2004, 20 (8-9): : 507 - 520
  • [25] Compression of Plenoptic Point Cloud Attributes Using 6-D Point Clouds and 6-D Transforms
    Krivokuca, Maja
    Miandji, Ehsan
    Guillemot, Christine
    Chou, Philip A. A.
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 593 - 607
  • [26] YOGA: Yet Another Geometry-based Point Cloud Compressor
    Zhang, Junteng
    Chen, Tong
    Ding, Dandan
    Ma, Zhan
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9070 - 9081
  • [27] REFINING THE BOUNDING VOLUMES FOR LOSSLESS COMPRESSION OF VOXELIZED POINT CLOUDS GEOMETRY
    Kaya, Emre Can
    Schwarz, Sebastian
    Tabus, Ioan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3408 - 3412
  • [28] Using neighbouring nodes for the compression of octrees representing the geometry of point clouds
    Lasserre, Sebastien
    Flynn, David
    Qu, Shouxing
    PROCEEDINGS OF THE 10TH ACM MULTIMEDIA SYSTEMS CONFERENCE (ACM MMSYS'19), 2019, : 145 - 153
  • [29] Geometry-Based Demosaicking
    Ferradans, Sira
    Bertalmio, Marcelo
    Caselles, Vicent
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (03) : 665 - 670
  • [30] Complexity of convex optimization using geometry-based measures and a reference point
    Robert M. Freund
    Mathematical Programming, 2004, 99 : 197 - 221