Raman study of carbon nanotube purification using atmospheric pressure plasma

被引:43
作者
Lee, Szetsen [1 ,2 ]
Peng, Jr-Wei [1 ,2 ]
Liu, Chih-Hung [3 ]
机构
[1] Chung Yuan Christian Univ, Dept Chem, Tao Yuan 32023, Taiwan
[2] Chung Yuan Christian Univ, Ctr Nanotechnol, Tao Yuan 32023, Taiwan
[3] Ind Technol Res Inst, Mech & Syst Res Labs, Hsinchu 31040, Taiwan
关键词
D O I
10.1016/j.carbon.2008.09.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes (MWCNTs) were treated with an atmospheric pressure plasma source using an argon/water mixture. Optical emission diagnostics has shown that hydroxyl radicals (OH) were the major reactive species in the plasma. The structural changes in MWCNTs were monitored by micro-Raman spectroscopy. The observed variation of the D and G band intensity ratio and position dispersion with plasma treatment time was ascribed to the change in structural disorder on MWCNT surfaces. Scanning electron microscopic study showed that some defects can be induced in MWCNTs during plasma treatment. Results of thermogravimetric analysis indicated that atmospheric pressure OH plasma is as effective as traditional wet methods for purifying MWCNTs. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2124 / 2132
页数:9
相关论文
共 39 条
[1]   Work functions and surface functional groups of multiwall carbon nanotubes [J].
Ago, H ;
Kugler, T ;
Cacialli, F ;
Salaneck, WR ;
Shaffer, MSP ;
Windle, AH ;
Friend, RH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (38) :8116-8121
[2]   OPENING CARBON NANOTUBES WITH OXYGEN AND IMPLICATIONS FOR FILLING [J].
AJAYAN, PM ;
EBBESEN, TW ;
ICHIHASHI, T ;
IIJIMA, S ;
TANIGAKI, K ;
HIURA, H .
NATURE, 1993, 362 (6420) :522-525
[3]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[4]   Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (47) :12144-12151
[5]   Raman spectroscopy of hydrogenated amorphous carbons [J].
Casiraghi, C ;
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2005, 72 (08)
[6]   UVOH spectrum used as a molecular pyrometer [J].
de Izarra, C .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (14) :1697-1704
[7]   A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes [J].
Delhaes, P. ;
Couzi, M. ;
Trinquecoste, M. ;
Dentzer, J. ;
Hamidou, H. ;
Vix-Guterl, C. .
CARBON, 2006, 44 (14) :3005-3013
[8]  
Djordjevic V, 2006, J OPTOELECTRON ADV M, V8, P1631
[9]   Raman spectroscopy on isolated single wall carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Jorio, A ;
Souza, AG ;
Saito, R .
CARBON, 2002, 40 (12) :2043-2061
[10]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99