NeuroGPS: automated localization of neurons for brain circuits using L1 minimization model

被引:52
|
作者
Quan, Tingwei [1 ,2 ,3 ]
Zheng, Ting [1 ,2 ]
Yang, Zhongqing [1 ,2 ]
Ding, Wenxiang [1 ,2 ]
Li, Shiwei [1 ,2 ]
Li, Jing [1 ,2 ]
Zhou, Hang [1 ,2 ]
Luo, Qingming [1 ,2 ]
Gong, Hui [1 ,2 ]
Zeng, Shaoqun [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Britton Chance Ctr Biomed Photon, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Biomed Engn, MoE Key Lab Biomed Photon, Wuhan 430074, Peoples R China
[3] Hubei Univ Educ, Sch Math & Econ, Wuhan 430205, Peoples R China
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
QUANTITATIVE-ANALYSIS; CELL-NUCLEI; SEGMENTATION; RECONSTRUCTION; TOMOGRAPHY; CHALLENGES; ALGORITHM; IMAGES; ATLAS; NICHE;
D O I
10.1038/srep01414
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Drawing the map of neuronal circuits at microscopic resolution is important to explain how brain works. Recent progresses in fluorescence labeling and imaging techniques have enabled measuring the whole brain of a rodent like a mouse at submicron-resolution. Considering the huge volume of such datasets, automatic tracing and reconstruct the neuronal connections from the image stacks is essential to form the large scale circuits. However, the first step among which, automated location the soma across different brain areas remains a challenge. Here, we addressed this problem by introducing L1 minimization model. We developed a fully automated system, NeuronGlobalPositionSystem (NeuroGPS) that is robust to the broad diversity of shape, size and density of the neurons in a mouse brain. This method allows locating the neurons across different brain areas without human intervention. We believe this method would facilitate the analysis of the neuronal circuits for brain function and disease studies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] L1 minimization using recursive reduction of dimensionality
    Krzic, Ana Sovic
    Sersic, Damir
    SIGNAL PROCESSING, 2018, 151 : 119 - 129
  • [2] Convergence of the reweighted l1 minimization algorithm for l2-lp minimization
    Chen, Xiaojun
    Zhou, Weijun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 47 - 61
  • [3] Dynamic Updating for l1 Minimization
    Asif, M. Salman
    Romberg, Justin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 421 - 434
  • [4] Sensitivity of l1 minimization to parameter choice
    Berk, Aaron
    Plan, Yaniv
    Yilmaz, Ozgur
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (02) : 397 - 453
  • [5] Orbital minimization method with l1 regularization
    Lu, Jianfeng
    Thicke, Kyle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 87 - 103
  • [6] L1 - βLq Minimization for Signal and Image Recovery
    Huo, Limei
    Chen, Wengu
    Ge, Huanmin
    Ng, Michael K.
    SIAM JOURNAL ON IMAGING SCIENCES, 2023, 16 (04): : 1886 - 1928
  • [7] A CONVEX MODEL AND L1 MINIMIZATION FOR MUSICAL NOISE REDUCTION IN BLIND SOURCE SEPARATION
    Ma, Wenye
    Yu, Meng
    Xin, Jack
    Osher, Stanley
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) : 223 - 238
  • [8] MINIMIZATION OF L1 OVER L2 FOR SPARSE SIGNAL RECOVERY WITH CONVERGENCE GUARANTEE
    Tao, M. I. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A770 - A797
  • [9] On the implementation of ADMM with dynamically configurable parameter for the separable l1/l2 minimization
    Wang, Jun
    Ma, Qiang
    OPTIMIZATION LETTERS, 2025, 19 (01) : 85 - 102
  • [10] Ubiquitous L1 Mosaicism in Hippocampal Neurons
    Upton, Kyle R.
    Gerhardt, Daniel J.
    Jesuadian, J. Samuel
    Richardson, Sandra R.
    Sanchez-Luque, Francisco J.
    Bodea, Gabriela O.
    Ewing, Adam D.
    Salvador-Palomeque, Carmen
    van der Knaap, Marjo S.
    Brennan, Paul M.
    Vanderver, Adeline
    Faulkner, Geoffrey J.
    CELL, 2015, 161 (02) : 228 - 239