共 50 条
OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE CENTRAL DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
被引:11
|作者:
Liu, Yong
[1
]
Shu, Chi-Wang
[2
]
Zhang, Mengping
[1
]
机构:
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金:
美国国家科学基金会;
关键词:
optimal error estimate;
central DG;
superconvergence points;
CONSERVATION-LAWS;
OVERLAPPING CELLS;
DIFFUSION-EQUATIONS;
CENTRAL SCHEMES;
STABILITY;
SUPERCONVERGENCE;
D O I:
10.1137/16M1089484
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyze the central discontinuous Galerkin method for time-dependent linear conservation laws. In one dimension, optimal a priori L-2 error estimates of order k + 1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k >= 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise tensor-product polynomials are used on overlapping meshes. Numerical experiments are given to demonstrate the theoretical results.
引用
收藏
页码:520 / 541
页数:22
相关论文