OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE CENTRAL DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS

被引:11
|
作者
Liu, Yong [1 ]
Shu, Chi-Wang [2 ]
Zhang, Mengping [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
optimal error estimate; central DG; superconvergence points; CONSERVATION-LAWS; OVERLAPPING CELLS; DIFFUSION-EQUATIONS; CENTRAL SCHEMES; STABILITY; SUPERCONVERGENCE;
D O I
10.1137/16M1089484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the central discontinuous Galerkin method for time-dependent linear conservation laws. In one dimension, optimal a priori L-2 error estimates of order k + 1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k >= 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise tensor-product polynomials are used on overlapping meshes. Numerical experiments are given to demonstrate the theoretical results.
引用
收藏
页码:520 / 541
页数:22
相关论文
共 50 条
  • [41] Error estimates for discontinuous Galerkin method for nonlinear parabolic equations
    Ohm, MR
    Lee, HY
    Shin, JY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) : 132 - 143
  • [42] Optimal error estimates of the local discontinuous Galerkin methods based on generalized fluxes for 1D linear fifth order partial differential equations
    Bi, Hui
    Chen, Yixin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [43] Optimal error estimates of the local discontinuous Galerkin methods based on generalized fluxes for 1D linear fifth order partial differential equations
    Hui Bi
    Yixin Chen
    Journal of Inequalities and Applications, 2022
  • [44] On a posteriori error estimation for Runge-Kutta discontinuous Galerkin methods for linear hyperbolic problems
    Georgoulis, Emmanuil H.
    Hall, Edward J. C.
    Makridakis, Charalambos G.
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (04)
  • [45] Error transport equations implementation for discontinuous Galerkin methods
    Wang, Hongyu
    Roy, Christopher J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [46] A priori hp-estimates for discontinuous Galerkin approximations to linear hyperbolic integro-differential equations
    Karaa, Samir
    Pani, Amiya K.
    Yadav, Sangita
    APPLIED NUMERICAL MATHEMATICS, 2015, 96 : 1 - 23
  • [47] A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem
    Gudi, Thirupathi
    Porwal, Kamana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 257 - 278
  • [48] A posteriori error estimates for discontinuous Galerkin methods of obstacle problems
    Wang, Fei
    Han, Weimin
    Eichholz, Joseph
    Cheng, Xiaoliang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 664 - 679
  • [49] Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems
    van der Sande, Kiera
    Appelo, Daniel
    Albin, Nathan
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (04) : 1385 - 1405
  • [50] Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems
    Kiera van der Sande
    Daniel Appelö
    Nathan Albin
    Communications on Applied Mathematics and Computation, 2023, 5 : 1385 - 1405