OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE CENTRAL DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS

被引:11
|
作者
Liu, Yong [1 ]
Shu, Chi-Wang [2 ]
Zhang, Mengping [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
optimal error estimate; central DG; superconvergence points; CONSERVATION-LAWS; OVERLAPPING CELLS; DIFFUSION-EQUATIONS; CENTRAL SCHEMES; STABILITY; SUPERCONVERGENCE;
D O I
10.1137/16M1089484
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the central discontinuous Galerkin method for time-dependent linear conservation laws. In one dimension, optimal a priori L-2 error estimates of order k + 1 are obtained for the semidiscrete scheme when piecewise polynomials of degree at most k (k >= 0) are used on overlapping uniform meshes. We then extend the analysis to multidimensions on uniform Cartesian meshes when piecewise tensor-product polynomials are used on overlapping meshes. Numerical experiments are given to demonstrate the theoretical results.
引用
收藏
页码:520 / 541
页数:22
相关论文
共 50 条
  • [31] Stability analysis and error estimates of implicit Runge-Kutta local discontinuous Galerkin methods for linear bi-harmonic equation
    Bi, Hui
    Zhang, Mengyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 149 : 211 - 220
  • [32] Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations
    Baccouch, Mahboub
    APPLIED NUMERICAL MATHEMATICS, 2016, 106 : 129 - 153
  • [33] CENTRAL LOCAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS FOR DIFFUSION EQUATIONS
    Liu, Yingjie
    Shu, Chi-Wang
    Tadmor, Eitan
    Zhang, Mengping
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (06): : 1009 - 1032
  • [34] Fourier Analysis of Local Discontinuous Galerkin Methods for Linear Parabolic Equations on Overlapping Meshes
    Chuenjarern, Nattaporn
    Yang, Yang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 671 - 688
  • [35] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS BASED ON UPWIND-BIASED FLUXES FOR 1D LINEAR HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Li, Dongfang
    Yang, Yang
    Zhang, Zhimin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 467 - 486
  • [36] SUPERCONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR TWO-DIMENSIONAL HYPERBOLIC EQUATIONS
    Cao, Waixiang
    Shu, Chi-Wang
    Yang, Yang
    Zhang, Zhimin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1651 - 1671
  • [37] Error estimates of the local discontinuous Galerkin methods for two-dimensional (μ)-Camassa-Holm equations
    Lu, Jinyang
    Xu, Yan
    Zhang, Chao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [38] SPARSE GRID CENTRAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR HYPERBOLIC SYSTEMS IN HIGH DIMENSIONS
    Tao, Zhanjing
    Chen, Anqi
    Zhang, Mengping
    Cheng, Yingda
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03) : A1626 - A1651
  • [39] Reconstructed Discontinuous Galerkin Methods for Hyperbolic Diffusion Equations on Unstructured Grids
    Lou, Jialin
    Liu, Xiaodong
    Luo, Hong
    Nishikawa, Hiroaki
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (05) : 1302 - 1327
  • [40] Stability analysis and error estimates of local discontinuous Galerkin methods for convection–diffusion equations on overlapping meshes
    Jie Du
    Yang Yang
    Eric Chung
    BIT Numerical Mathematics, 2019, 59 : 853 - 876