Pixle: a fast and effective black-box attack based on rearranging pixels

被引:10
|
作者
Pomponi, Jary [1 ]
Scardapane, Simone [1 ]
Uncini, Aurelio [1 ]
机构
[1] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun DIET, Rome, Italy
来源
2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2022年
关键词
Adversarial Attack; Neural Networks; Random Search; Differential Evolution;
D O I
10.1109/IJCNN55064.2022.9892966
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training procedure, and we propose a novel attack that is capable of correctly attacking a high percentage of samples by rearranging a small number of pixels within the attacked image. We demonstrate that our attack works on a large number of datasets and models, that it requires a small number of iterations, and that the distance between the original sample and the adversarial one is negligible to the human eye.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Rearranging Pixels is a Powerful Black-Box Attack for RGB and Infrared Deep Learning Models
    Pomponi, Jary
    Dantoni, Daniele
    Alessandro, Nicolosi
    Scardapane, Simone
    IEEE ACCESS, 2023, 11 : 11298 - 11306
  • [2] An Effective Way to Boost Black-Box Adversarial Attack
    Feng, Xinjie
    Yao, Hongxun
    Che, Wenbin
    Zhang, Shengping
    MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 : 393 - 404
  • [3] SIMULATOR ATTACK plus FOR BLACK-BOX ADVERSARIAL ATTACK
    Ji, Yimu
    Ding, Jianyu
    Chen, Zhiyu
    Wu, Fei
    Zhang, Chi
    Sun, Yiming
    Sun, Jing
    Liu, Shangdong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 636 - 640
  • [4] FABRICATE-VANISH: AN EFFECTIVE AND TRANSFERABLE BLACK-BOX ADVERSARIAL ATTACK INCORPORATING FEATURE DISTORTION
    Lu, Yantao
    Du, Xueying
    Sun, Bingkun
    Ren, Haining
    Velipasalar, Senem
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 809 - 813
  • [5] A Black-Box Attack on Neural Networks Based on Swarm Evolutionary Algorithm
    Liu, Xiaolei
    Hu, Teng
    Ding, Kangyi
    Bai, Yang
    Niu, Weina
    Lu, Jiazhong
    INFORMATION SECURITY AND PRIVACY, ACISP 2020, 2020, 12248 : 268 - 284
  • [6] Black-Box Decision based Adversarial Attack with Symmetric α-stable Distribution
    Srinivasan, Vignesh
    Kuruoglu, Ercan E.
    Mueller, Klaus-Robert
    Samek, Wojciech
    Nakajima, Shinichi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [7] Black-box Transferable Attack Method for Object Detection Based on GAN
    Lu Y.-X.
    Liu Z.-Y.
    Luo Y.-G.
    Deng S.-Y.
    Jiang T.
    Ma J.-Y.
    Dong Y.-P.
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (07): : 3531 - 3550
  • [8] Adaptive hyperparameter optimization for black-box adversarial attack
    Zhenyu Guan
    Lixin Zhang
    Bohan Huang
    Bihe Zhao
    Song Bian
    International Journal of Information Security, 2023, 22 : 1765 - 1779
  • [9] Black-Box Adversarial Attack via Overlapped Shapes
    Williams, Phoenix
    Li, Ke
    Min, Geyong
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 467 - 468
  • [10] Adaptive hyperparameter optimization for black-box adversarial attack
    Guan, Zhenyu
    Zhang, Lixin
    Huang, Bohan
    Zhao, Bihe
    Bian, Song
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1765 - 1779