A Monte Carlo tree search approach to learning decision trees

被引:2
|
作者
Nunes, Cecilia [1 ,2 ]
De Craene, Mathieu [2 ]
Langet, Helene [2 ]
Camara, Oscar [1 ]
Jonsson, Anders [1 ]
机构
[1] Univ Pompeu Fabra, Barcelona, Spain
[2] Philips Res Medisys, Paris, France
关键词
Decision trees; Monte Carlo tree search; Interpretability; GAME;
D O I
10.1109/ICMLA.2018.00070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Decision trees (DTs) are a widely used prediction tool, owing to their interpretability. Standard learning methods follow a locally-optimal approach that trades off prediction performance for computational efficiency. Such methods can however be far from optimal, and it may pay off to spend more computational resources to increase performance. Monte Carlo tree search (MCTS) is an approach to approximate optimal choices in exponentially large search spaces. Since exploring the space of all possible DTs is computationally intractable, we propose a DT learning approach based on MCTS. To bound the branching factor of MCTS, we limit the number of decisions at each level of the search tree, and introduce mechanisms to balance exploration, DT size and the statistical significance of the predictions. To mitigate the computational cost of our method, we employ a move pruning strategy that discards some branches of the search tree, leading to improved performance. The experiments show that our approach outperformed locallyoptimal search in 20 out of 31 datasets, with a reduction in DT size in most of the cases.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 50 条
  • [21] Monte Carlo Tree Search with Metaheuristics
    Mandziuk, Jacek
    Walczak, Patryk
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2023, PT II, 2023, 14126 : 134 - 144
  • [22] Elastic Monte Carlo Tree Search
    Xu, Linjie
    Dockhorn, Alexander
    Perez-Liebana, Diego
    IEEE TRANSACTIONS ON GAMES, 2023, 15 (04) : 527 - 537
  • [23] Monte Carlo Tree Search in Hex
    Arneson, Broderick
    Hayward, Ryan B.
    Henderson, Philip
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2010, 2 (04) : 251 - 258
  • [24] Monte Carlo tree search in Kriegspiel
    Ciancarini, Paolo
    Favini, Gian Piero
    ARTIFICIAL INTELLIGENCE, 2010, 174 (11) : 670 - 684
  • [25] MONTE CARLO TREE SEARCH: A TUTORIAL
    Fu, Michael C.
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 222 - 236
  • [26] Monte Carlo Tree Search for Quoridor
    Respall, Victor Massague
    Brown, Joseph Alexander
    Aslam, Hamna
    19TH INTERNATIONAL CONFERENCE ON INTELLIGENT GAMES AND SIMULATION (GAME-ON(R) 2018), 2018, : 5 - 9
  • [27] An Analysis of Monte Carlo Tree Search
    James, Steven
    Konidaris, George
    Rosman, Benjamin
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3576 - 3582
  • [28] Vine copula structure learning via Monte Carlo tree search
    Chang, Bo
    Pan, Shenyi
    Joe, Harry
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 353 - 361
  • [29] Learning to Search Promising Regions by a Monte-Carlo Tree Model
    Xia, Hai
    Li, Changhe
    Zeng, Sanyou
    Tan, Qingshan
    Wang, Junchen
    Yang, Shengxiang
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [30] Combining Monte Carlo Tree Search and Apprenticeship Learning for Capture the Flag
    Ivanovic, Jayden
    Raffe, William L.
    Zambetta, Fabio
    Li, Xiaodong
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND GAMES (CIG), 2015, : 154 - 161