Generalized Robertson-Walker spacetimes - A survey

被引:157
作者
Mantica, Carlo Alberto [1 ]
Molinari, Luca Guido [2 ,3 ]
机构
[1] IIS Lagrange, Via L Modignani 65, I-20161 Milan, Italy
[2] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[3] INFN Sezione Milano, Via Celoria 16, I-20133 Milan, Italy
关键词
Generalized Robertson-Walker spacetime; perfect fluid spacetime; Killing vector; conformal Killing vector; torse-forming vector; concircular vector; conformal Killing tensor; Robertson-Walker spacetime; CONSTANT MEAN-CURVATURE; SPACELIKE HYPERSURFACES; NULL HYPERSURFACES; UNIQUENESS; EQUATION; STABILITY; GEOMETRY; PRODUCT; TIMES;
D O I
10.1142/S021988781730001X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalized Robertson-Walker spacetimes extend the notion of Robertson-Walker spacetimes, by allowing for spatial non-homogeneity. A survey is presented, with main focus on Chen's characterization in terms of a timelike concircular vector. Together with their most important properties, some new results are presented.
引用
收藏
页数:27
相关论文
共 50 条
[21]   On the geometry of generalized Robertson-Walker spacetimes:: curvature and Killing fields [J].
Sánchez, M .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (01) :1-15
[22]   Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes [J].
Romero, Alfonso ;
Rubio, Rafael M. ;
Salamanca, Juan J. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (11)
[23]   Rigidity of complete spacelike hypersurfaces in spatially weighted generalized Robertson-Walker spacetimes [J].
Albujer, Alma L. ;
de Lima, Henrique F. ;
Oliveira, Arlandson M. ;
Velasquez, Marco Antonio L. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 50 :140-154
[24]   Stochastically complete constant mean curvature spacelike hypersurfaces in Generalized Robertson-Walker spacetimes [J].
Medina, Maria A. ;
Pelegrin, Jose A. S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2025, 214
[25]   Weak maximum principles and geometric estimates for spacelike hypersurfaces in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Rigoli, Marco ;
Scoleri, Simona .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 :119-142
[26]   ON HORIZONTAL LIGHTLIKE HYPERSURFACES OF ROBERTSON-WALKER SPACETIMES [J].
Liu, Ximin ;
Pan, Quanxiang .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (02) :109-121
[27]   Galilean generalized Robertson-Walker spacetimes: A new family of Galilean geometrical models [J].
de la Fuente, Daniel ;
Rubio, Rafael M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[28]   Mean curvature flow of graphs in generalized Robertson-Walker spacetimes with perpendicular Neumann boundary condition [J].
de Lira, Jorge H. S. ;
Roing, Fernanda .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) :939-966
[29]   A New Calabi-Bernstein Type Result in Spatially Closed Generalized Robertson-Walker Spacetimes [J].
Aquino, C. ;
Baltazar, H. ;
de Lima, H. F. .
MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) :235-245
[30]   Constant Mean Curvature Spacelike Surfaces in Three-Dimensional Generalized Robertson-Walker Spacetimes [J].
Caballero, Magdalena ;
Romero, Alfonso ;
Rubio, Rafael M. .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (01) :85-105