Fully Convolutional Networks for Semantic Segmentation of Very High Resolution Remotely Sensed Images Combined With DSM

被引:261
作者
Sun, Weiwei [1 ]
Wang, Ruisheng [1 ,2 ]
机构
[1] Univ Calgary, Dept Geomat Engn, Calgary, AB T2N 1N4, Canada
[2] Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Fully convolutional networks (FCN); deep learning; semantic segmentation; remote sensing; very high resolution (VHR);
D O I
10.1109/LGRS.2018.2795531
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, approaches based on fully convolutional networks (FCN) have achieved state-of-the-art performance in the semantic segmentation of very high resolution (VHR) remotely sensed images. One central issue in this method is the loss of detailed information due to downsampling operations in FCN. To solve this problem, we introduce the maximum fusion strategy that effectively combines semantic information from deep layers and detailed information from shallow layers. Furthermore, this letter develops a powerful backend to enhance the result of FCN by leveraging the digital surface model, which provides height information for VHR images. The proposed semantic segmentation scheme has achieved an overall accuracy of 90.6% on the ISPRS Vaihingen benchmark.
引用
收藏
页码:474 / 478
页数:5
相关论文
共 19 条
[1]  
[Anonymous], CAFFE CONVOLUT UNPUB
[2]  
[Anonymous], FULLY CONVOLUT UNPUB
[3]  
Couprie C., 2013, INDOOR SEMANTI UNPUB
[4]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[5]   Robust smoothing of gridded data in one and higher dimensions with missing values [J].
Garcia, Damien .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) :1167-1178
[6]  
Gerke M., 2014, "Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen), DOI 10.13140/2.1.5015.9683
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[9]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[10]   SEMANTIC SEGMENTATION OF AERIAL IMAGES WITH AN ENSEMBLE OF CNNS [J].
Marmanis, D. ;
Wegner, J. D. ;
Galliani, S. ;
Schindler, K. ;
Datcu, M. ;
Stilla, U. .
XXIII ISPRS CONGRESS, COMMISSION III, 2016, 3 (03) :473-480