Cohomology of bifunctors

被引:12
作者
Franjou, Vincent
Friedlander, Eric M.
机构
[1] Laboratoire Jean Leray, Université de Nantes, 44322 Nantes Cedex 3
[2] Department of Mathematics, Northwestern University, Evanston
基金
美国国家科学基金会;
关键词
D O I
10.1112/plms/pdn005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate the study of the cohomology of (strict polynomial) bifunctors by introducing the foundational formalism, establishing numerous properties in analogy with the cohomology of functors, and providing computational techniques. Since one of the initial motivations for the study of functor cohomology was the determination of H* (GL(k), S*(gl) circle times Lambda (gl)), we keep this challenging example in mind as we achieve numerous computations which illustrate our methods.
引用
收藏
页码:514 / 544
页数:31
相关论文
共 16 条
[1]   SCHUR FUNCTORS AND SCHUR COMPLEXES [J].
AKIN, K ;
BUCHSBAUM, DA ;
WEYMAN, J .
ADVANCES IN MATHEMATICS, 1982, 44 (03) :207-278
[2]   THE FROBENIUS MORPHISM ON THE CO-HOMOLOGY OF HOMOGENEOUS VECTOR-BUNDLES ON G-B [J].
ANDERSEN, HH .
ANNALS OF MATHEMATICS, 1980, 112 (01) :113-121
[3]   Calculations in THH-theory [J].
Betley, S .
JOURNAL OF ALGEBRA, 1996, 180 (02) :445-458
[4]   Stable K-theory of finite fields [J].
Betley, S .
K-THEORY, 1999, 17 (02) :103-111
[5]  
DWYER WG, 1980, ANN MATH, V111, P239, DOI 10.2307/1971200
[6]  
EVENS L, 1982, T AM MATH SOC, V270, P1
[7]   General linear and functor cohomology over finite fields [J].
Franjou, V ;
Friedlander, EM ;
Scorichenko, A ;
Suslin, A .
ANNALS OF MATHEMATICS, 1999, 150 (02) :663-728
[8]   MACLANE COHOMOLOGY OF FINITE-FIELDS [J].
FRANJOU, V ;
LANNES, J ;
SCHWARTZ, L .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :513-538
[9]  
FRANJOU V, 2003, PANORAMASTET SYNTHES, V16
[10]  
FRIEDLANDER E, 1997, INVENT MATH, V127, P235