Stock Price Prediction Based on SSA and SVM

被引:56
作者
Wen Fenghua [1 ]
Xiao Jihong [2 ]
He Zhifang [1 ]
Gong Xu [1 ]
机构
[1] Cent S Univ, Sch Business, Changsha 410081, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Econ & Management, Changsha 410004, Hunan, Peoples R China
来源
2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, ITQM 2014 | 2014年 / 31卷
关键词
Stock Price Series; Singular Spectrum Analysis; Support Vector Machine (SVM); Combination Predictive Methods;
D O I
10.1016/j.procs.2014.05.309
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper, using the singular spectrum analysis (SSA), decomposes the stock price into terms of the trend, the market fluctuation, and the noise with different economic features over different time horizons, and then introduce these features into the support vector machine (SVM) to make price predictions. The empirical evidence shows that, compared with the SVM without these price features, the combination predictive methods-the EEMD-SVM and the SSA-SVM, which combine the price features into the SVMs perform better, with the best prediction to the SSA-SVM. (C) 2014 Published by Elsevier B.V. Open access under CC BY-NC-ND license.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 9 条
[1]   Signal Extraction and Forecasting of the UK Tourism Income Time Series: A Singular Spectrum Analysis Approach [J].
Beneki, Christina ;
Eeckels, Bruno ;
Leon, Costas .
JOURNAL OF FORECASTING, 2012, 31 (05) :391-400
[2]   EXTRACTING QUALITATIVE DYNAMICS FROM EXPERIMENTAL-DATA [J].
BROOMHEAD, DS ;
KING, GP .
PHYSICA D, 1986, 20 (2-3) :217-236
[3]   Short term forecasting with support vector machines and application to stock price prediction [J].
Ince, Huseyin ;
Trafalis, Theodore B. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2008, 37 (06) :677-687
[4]  
Lian Jijian, 2008, SCI CHINA SER, V09, P1398
[5]  
Sai Ying, 2013, CHINA J MANAGEMENT S, V03, P35
[6]  
Vapnik V., 1998, Statistical Learning Theory, P5
[7]  
Yang Yunfei, 2010, J MANAGE, V12, P1884
[8]  
Zhang Xuegong, 2000, ACTA AUTOMATICA SINI, V01, P36
[9]   A new approach for crude oil price analysis based on Empirical Mode Decomposition [J].
Zhang, Xun ;
Lai, K. K. ;
Wang, Shou-Yang .
ENERGY ECONOMICS, 2008, 30 (03) :905-918