Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence

被引:38
作者
Han, In Woong [1 ]
Cho, Kyeongwon [2 ]
Ryu, Youngju [1 ]
Shin, Sang Hyun [1 ]
Heo, Jin Seok [1 ]
Choi, Dong Wook [1 ]
Chung, Myung Jin [2 ,3 ]
Kwon, Oh Chul [4 ]
Cho, Baek Hwan [2 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Dept Surg, Sch Med, Seoul 06351, South Korea
[2] Sungkyunkwan Univ, Med Artificial Intelligence Res Ctr, Samsung Med Ctr, Dept Med Device Management & Res,Sch Med,SAIHST, 81 Irwon Ro, Seoul 06351, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Radiol, Sch Med, Seoul 06351, South Korea
[4] Med DataBase Inc, Artificial Intelligence Res Ctr, Seoul 06048, South Korea
基金
新加坡国家研究基金会;
关键词
Postoperative pancreatic fistula; Pancreatoduodenectomy; Neural networks; Recursive feature elimination; DISTAL PANCREATECTOMY; ACID MESH; PANCREATICOJEJUNOSTOMY; VALIDATION; VISUALIZATION; PREVENTION;
D O I
10.3748/wjg.v26.i30.4453
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND Despite advancements in operative technique and improvements in postoperative managements, postoperative pancreatic fistula (POPF) is a life-threatening complication following pancreatoduodenectomy (PD). There are some reports to predict POPF preoperatively or intraoperatively, but the accuracy of those is questionable. Artificial intelligence (AI) technology is being actively used in the medical field, but few studies have reported applying it to outcomes after PD. AIM To develop a risk prediction platform for POPF using an AI model. METHODS Medical records were reviewed from 1769 patients at Samsung Medical Center who underwent PD from 2007 to 2016. A total of 38 variables were inserted into AI-driven algorithms. The algorithms tested to make the risk prediction platform were random forest (RF) and a neural network (NN) with or without recursive feature elimination (RFE). The median imputation method was used for missing values. The area under the curve (AUC) was calculated to examine the discriminative power of algorithm for POPF prediction. RESULTS The number of POPFs was 221 (12.5%) according to the International Study Group of Pancreatic Fistula definition 2016. After median imputation, AUCs using 38 variables were 0.68 +/- 0.02 with RF and 0.71 +/- 0.02 with NN. The maximal AUC using NN with RFE was 0.74. Sixteen risk factors for POPF were identified by AI algorithm: Pancreatic duct diameter, body mass index, preoperative serum albumin, lipase level, amount of intraoperative fluid infusion, age, platelet count, extrapancreatic location of tumor, combined venous resection, co-existing pancreatitis, neoadjuvant radiotherapy, American Society of Anesthesiologists' score, sex, soft texture of the pancreas, underlying heart disease, and preoperative endoscopic biliary decompression. We developed a web-based POPF prediction platform, and this application is freely available athttp://popfrisk.smchbp.org. CONCLUSION This study is the first to predict POPF with multiple risk factors using AI. This platform is reliable (AUC 0.74), so it could be used to select patients who need especially intense therapy and to preoperatively establish an effective treatment strategy.
引用
收藏
页码:4453 / 4464
页数:12
相关论文
共 49 条
[1]  
Allen PJ, 2014, NEW ENGL J MED, V370, P2014, DOI [10.1056/NEJMoa1313688, 10.1056/NEJMc1407470]
[2]   The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After [J].
Bassi, Claudio ;
Marchegiani, Giovanni ;
Dervenis, Christos ;
Sarr, Micheal ;
Abu Hilal, Mohammad ;
Adham, Mustapha ;
Allen, Peter ;
Andersson, Roland ;
Asbun, Horacio J. ;
Besselink, Marc G. ;
Conlon, Kevin ;
Del Chiaro, Marco ;
Falconi, Massimo ;
Fernandez-Cruz, Laureano ;
Fernandez-Del Castillo, Carlos ;
Fingerhut, Abe ;
Friess, Helmut ;
Gouma, Dirk J. ;
Hackert, Thilo ;
Izbicki, Jakob ;
Lillemoe, Keith D. ;
Neoptolemos, John P. ;
Olah, Attila ;
Schulick, Richard ;
Shrikhande, Shailesh V. ;
Takada, Tadahiro ;
Takaori, Kyoichi ;
Traverso, William ;
Vollmer, Charles ;
Wolfgang, Christopher L. ;
Yeo, Charles J. ;
Salvia, Roberto ;
Buehler, Marcus .
SURGERY, 2017, 161 (03) :584-591
[3]   Application of recurrent neural network for online prediction of cell density of recombinant Pichia pastoris producing HBsAg [J].
Beiroti, Ahmad ;
Aghasadeghi, Mohammad Reza ;
Hosseini, Seyed Nezamedin ;
Norouzian, Dariush .
PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2019, 49 (04) :352-359
[4]   Pancreatic Surgery in the Very Old: Face to Face With a Challenge of the Near Future [J].
Belyaev, Orlin ;
Herzog, Torsten ;
Kaya, Guelnur ;
Chromik, Ansgar M. ;
Meurer, Kirsten ;
Uhl, Waldemar ;
Mueller, Christophe A. .
WORLD JOURNAL OF SURGERY, 2013, 37 (05) :1013-1020
[5]   Does Type of Pancreaticojejunostomy after Pancreaticoduodenectomy Decrease Rate of Pancreatic Fistula? A Randomized, Prospective, Dual-institution Trial [J].
Berger, Adam C. ;
Howard, Thomas J. ;
Kennedy, Eugene P. ;
Sauter, Patricia K. ;
Bower-Cherry, Maryanne ;
Dutkevitch, Sarah ;
Hyslop, Terry ;
Schmidt, C. Max ;
Rosato, Ernest L. ;
Lavu, Harish ;
Nakeeb, Atilla ;
Pitt, Henry A. ;
Lillemoe, Keith D. ;
Yeo, Charles J. .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2009, 208 (05) :738-747
[6]   MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery [J].
Bihorac, Azra ;
Ozrazgat-Baslanti, Tezcan ;
Ebadi, Ashkan ;
Motaei, Amir ;
Madkour, Mohcine ;
Pardalos, Panagote M. ;
Lipori, Gloria ;
Hogan, William R. ;
Efron, Philip A. ;
Moore, Frederick ;
Moldawer, Lyle L. ;
Wang, Daisy Zhe ;
Hobson, Charles E. ;
Rashidi, Parisi ;
Li, Xiaolin ;
Momcilovic, Petar .
ANNALS OF SURGERY, 2019, 269 (04) :652-662
[7]   A Prospectively Validated Clinical Risk Score Accurately Predicts Pancreatic Fistula after Pancreatoduodenectomy [J].
Callery, Mark P. ;
Pratt, Wande B. ;
Kent, Tara S. ;
Chaikof, Elliot L. ;
Vollmer, Charles M., Jr. .
JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2013, 216 (01) :1-14
[8]   Systematic Review and Meta-analysis of Restrictive Perioperative Fluid Management in Pancreaticoduodenectomy [J].
Chen, Brian P. ;
Chen, Marian ;
Bennett, Sean ;
Lemon, Kristina ;
Bertens, Kimberly A. ;
Balaa, Fady K. ;
Martel, Guillaume .
WORLD JOURNAL OF SURGERY, 2018, 42 (09) :2938-2950
[9]   Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels [J].
Cho, Baek Hwan ;
Yu, Hwanjo ;
Lee, Jongshill ;
Chee, Young Joon ;
Kim, In Young ;
Kim, Sun I. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2008, 12 (02) :247-256
[10]   Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods [J].
Cho, Baek Hwan ;
Yu, Hwanjo ;
Kim, Kwang-Won ;
Kim, Tae Hyun ;
Kim, In Young ;
Kim, Sun I. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2008, 42 (01) :37-53