Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression

被引:19
作者
Khare, Kshitij [1 ]
Hobert, James P. [1 ]
机构
[1] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Convergence rate; Geometric drift condition; Markov chain; Monte Carlo; CHAIN MONTE-CARLO; WIDTH OUTPUT ANALYSIS; CONVERGENCE;
D O I
10.1016/j.jmva.2012.05.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the quantile regression model Y = X beta + sigma is an element of where the components of is an element of are i.i.d. errors from the asymmetric Laplace distribution with rth quantile equal to 0, where r is an element of (0, 1) is fixed. Kozumi and Kobayashi (2011) [9] introduced a Gibbs sampler that can be used to explore the intractable posterior density that results when the quantile regression likelihood is combined with the usual normal/inverse gamma prior for (beta, sigma). In this paper, the Markov chain underlying Kozumi and Kobayashi's (2011) [9] algorithm is shown to converge at a geometric rate. No assumptions are made about the dimension of X, so the result still holds in the "large p, small n" case. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2005, ECONOMETRIC SOC MONO
[2]   A new proof of convergence of MCMC via the ergodic theorem [J].
Asmussen, Soren ;
Glynn, Peter W. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (10) :1482-1485
[3]   A few remarks on "Fixed-Width Output Analysis for Markov Chain Monte Carlo" by Jones et al. [J].
Bednorz, Witold ;
Latuszynski, Krzysztof .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) :1485-1486
[4]   Markov chain Monte Carlo: Can we trust the third significant figure? [J].
Flegal, James M. ;
Haran, Murali ;
Jones, Galin L. .
STATISTICAL SCIENCE, 2008, 23 (02) :250-260
[5]   BATCH MEANS AND SPECTRAL VARIANCE ESTIMATORS IN MARKOV CHAIN MONTE CARLO [J].
Flegal, James M. ;
Jones, Galin L. .
ANNALS OF STATISTICS, 2010, 38 (02) :1034-1070
[6]   Fixed-width output analysis for Markov chain Monte Carlo [J].
Jones, Galin L. ;
Haran, Murali ;
Caffo, Brian S. ;
Neath, Ronald .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) :1537-1547
[7]   A SPECTRAL ANALYTIC COMPARISON OF TRACE-CLASS DATA AUGMENTATION ALGORITHMS AND THEIR SANDWICH VARIANTS [J].
Khare, Kshitij ;
Hobert, James P. .
ANNALS OF STATISTICS, 2011, 39 (05) :2585-2606
[8]  
Kotz S., 2001, The Laplace Distributionand Generalizations: A Revisit With Applications to Communications,Economics, Engineering, and Finance, V1st
[9]   Gibbs sampling methods for Bayesian quantile regression [J].
Kozumi, Hideo ;
Kobayashi, Genya .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) :1565-1578
[10]  
Meyn S.P., 1993, MARKOV CHAINS STOCHA