Nonlinear Triple Product A*B plus B*A for Derivations on *-Algebras

被引:0
作者
Darvish, Vahid [1 ]
Nouri, Mojtaba [2 ]
Razeghi, Mehran [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar 474161468, Iran
关键词
triple product derivation; prime *-algebra; additive map; PRESERVING PRODUCT; MAPS; JORDAN;
D O I
10.1134/S0001434620070196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a prime *-algebra. In this paper, assuming that Phi : A -> A satisfies Phi(A lozenge B lozenge C) = Phi(A) lozenge B lozenge C + A lozenge F(B) lozenge C + A lozenge B lozenge Phi(C) where A lozenge B = A* B + B * A for all A, B is an element of A, we prove that Phi is additive an *-derivation.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 21 条
[1]   DERIVATIONS OF NEST ALGEBRAS [J].
CHRISTENSEN, E .
MATHEMATISCHE ANNALEN, 1977, 229 (02) :155-161
[2]   Maps preserving product XY-YX* on factor von Neumann algebras [J].
Cui, Jianlian ;
Li, Chi-Kwong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) :833-842
[3]  
Darvish V., NONLINEAR NEW PRODUC
[4]   MAPS PRESERVING JORDAN AND *-JORDAN TRIPLE PRODUCT ON OPERATOR *-ALGEBRAS [J].
Darvish, Vahid ;
Nouri, Mojtaba ;
Razeghi, Mehran ;
Taghavi, Ali .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (02) :451-459
[5]   MAPS PRESERVING η-PRODUCT A*B plus ηBA* ON C*-ALGEBRAS [J].
Darvish, Vahid ;
Nazari, Haji Mohammad ;
Rohi, Hamid ;
Taghavi, Ali .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (03) :867-876
[6]  
Kadison R.V., 1986, FUNDAMENTALS THEORY, VII
[7]  
Kadison R.V., 1983, Fundamentals of the Theory of Operator Algebras, VI
[8]  
Li C, 2018, B IRAN MATH SOC, V44, P729, DOI 10.1007/s41980-018-0048-3
[9]   Nonlinear Skew Lie Triple Derivations between Factors [J].
Li, Chang Jing ;
Zhao, Fang Fang ;
Chen, Quan Yuan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (07) :821-830
[10]   Non-linear ξ-Jordan *-derivations on von Neumann algebras [J].
Li, Changjing ;
Lu, Fangyan ;
Fang, Xiaochun .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (04) :466-473