NEURAL NETWORK HYPERSPECTRAL UNMIXING WITH SPECTRAL INFORMATION DIVERGENCE OBJECTIVE

被引:0
作者
Palsson, Frosti [1 ]
Sigurdsson, Jakob [1 ]
Sveinsson, Johannes R. [1 ]
Ulfarsson, Magnus O. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Hyperspectral unmixing; autoencoder; deep learning; neural network; spectral information divergence; SPARSE REGRESSION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral unmixing is a challenging inverse problem that involves determining the fractional abundances of the representive material (endmembers) in each pixel. In this paper, we develop a neural network autoencoder, that dynamically exploits the sparsity of the abundances and enforces the abundance sum constraint (ASC) for hyperspectral unmixing. Instead of using the conventional mean square error (MSE) objective function, we use the spectral information divergence (SID) measure. Experiments are performed using a real hyperspectral dataset and we compare results obtained using both MSE and SID. It is demonstrated by qualitative inspection that using SID gives significantly better results than using MSE.
引用
收藏
页码:755 / 758
页数:4
相关论文
共 50 条
[11]   DEEP SPECTRAL CONVOLUTION NETWORK FOR HYPERSPECTRAL UNMIXING [J].
Ozkan, Savas ;
Akar, Gozde Bozdagi .
2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, :3313-3317
[12]   Feedback Information-Guided Spectral Variability Attention Network for Hyperspectral Unmixing [J].
Xiang, Shu ;
Li, Xiaorun ;
Chen, Shuhan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
[13]   A Multibranch Convolutional Neural Network for Hyperspectral Unmixing [J].
Tulczyjew, Lukasz ;
Kawulok, Michal ;
Longepe, Nicolas ;
Le Saux, Bertrand ;
Nalepa, Jakub .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[14]   Deep convolutional transformer network for hyperspectral unmixing [J].
Hadi, Fazal ;
Yang, Jingxiang ;
Farooque, Ghulam ;
Xiao, Liang .
EUROPEAN JOURNAL OF REMOTE SENSING, 2023, 56 (01)
[15]   Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information [J].
Tang, Wei ;
Shi, Zhenwei ;
Wu, Ying ;
Zhang, Changshui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02) :770-783
[16]   ADDRESSING SPECTRAL VARIABILITY IN HYPERSPECTRAL UNMIXING WITH UNSUPERVISED NEURAL NETWORKS [J].
Lin, Yuanhang ;
Gader, Paul .
2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
[17]   A Global Spectral-Spatial Feature Learning Network for Semisupervised Hyperspectral Unmixing [J].
Kong, Fanqiang ;
Chen, Mengyue ;
Li, Yunsong ;
Li, Dan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :3190-3203
[18]   EvoNAS: Evolvable Neural Architecture Search for Hyperspectral Unmixing [J].
Han, Zhu ;
Hong, Danfeng ;
Gao, Lianru ;
Chanussot, Jocelyn ;
Zhang, Bing .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :3325-3328
[19]   Spatial-spectral collaborative attention network for hyperspectral unmixing [J].
Chen, Xiaojie ;
Meng, Fanlei ;
Mo, Ye ;
Sun, Haixin .
GEOCARTO INTERNATIONAL, 2024, 39 (01)
[20]   Gated Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing [J].
Hua, Ziqiang ;
Li, Xiaorun ;
Jiang, Jianfeng ;
Zhao, Liaoying .
REMOTE SENSING, 2021, 13 (16)