NEURAL NETWORK HYPERSPECTRAL UNMIXING WITH SPECTRAL INFORMATION DIVERGENCE OBJECTIVE

被引:0
|
作者
Palsson, Frosti [1 ]
Sigurdsson, Jakob [1 ]
Sveinsson, Johannes R. [1 ]
Ulfarsson, Magnus O. [1 ]
机构
[1] Univ Iceland, Fac Elect & Comp Engn, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Hyperspectral unmixing; autoencoder; deep learning; neural network; spectral information divergence; SPARSE REGRESSION;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Hyperspectral unmixing is a challenging inverse problem that involves determining the fractional abundances of the representive material (endmembers) in each pixel. In this paper, we develop a neural network autoencoder, that dynamically exploits the sparsity of the abundances and enforces the abundance sum constraint (ASC) for hyperspectral unmixing. Instead of using the conventional mean square error (MSE) objective function, we use the spectral information divergence (SID) measure. Experiments are performed using a real hyperspectral dataset and we compare results obtained using both MSE and SID. It is demonstrated by qualitative inspection that using SID gives significantly better results than using MSE.
引用
收藏
页码:755 / 758
页数:4
相关论文
共 50 条
  • [1] BCUN: Bayesian Fully Convolutional Neural Network for Hyperspectral Spectral Unmixing
    Fang, Yuan
    Wang, Yuxian
    Xu, Linlin
    Zhuo, Rongming
    Wong, Alexander
    Clausi, David A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] BCUN: Bayesian Fully Convolutional Neural Network for Hyperspectral Spectral Unmixing
    Fang, Yuan
    Wang, Yuxian
    Xu, Linlin
    Zhuo, Rongming
    Wong, Alexander
    Clausi, David A.
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [3] Advanced spectral unmixing algorithm based on spectral information divergence
    Xu, Zhou
    Zhao, Huijie
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2009, 35 (09): : 1091 - 1094
  • [4] DEEP SPECTRAL CONVOLUTION NETWORK FOR HYPERSPECTRAL UNMIXING
    Ozkan, Savas
    Akar, Gozde Bozdagi
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3313 - 3317
  • [5] Feedback Information-Guided Spectral Variability Attention Network for Hyperspectral Unmixing
    Xiang, Shu
    Li, Xiaorun
    Chen, Shuhan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [6] A new spectral unmixing algorithm based on spectral information divergence
    Xu Zhou
    Zhao Huijie
    SEVENTH INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION AND CONTROL TECHNOLOGY: SENSORS AND INSTRUMENTS, COMPUTER SIMULATION, AND ARTIFICIAL INTELLIGENCE, 2008, 7127
  • [7] GRAPH NEURAL NETWORK BASED INTERPRETABLE SPECTRAL UNMIXING FOR HYPERSPECTRAL UNMIXING HYPERSPECTRAL IIRS DATA ONBOARD CHANDRAYAAN-2 MISSION
    Arun, P. V.
    Sahoo, Maitreya Mohan
    Porwal, Alok
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 4202 - 4205
  • [8] A NEURAL NETWORK METHOD FOR NONLINEAR HYPERSPECTRAL UNMIXING
    Koirala, Bikram
    Heylen, Rob
    Scheunders, Paul
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4233 - 4236
  • [9] A Multibranch Convolutional Neural Network for Hyperspectral Unmixing
    Tulczyjew, Lukasz
    Kawulok, Michal
    Longepe, Nicolas
    Le Saux, Bertrand
    Nalepa, Jakub
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [10] Multi-objective based spectral unmixing for hyperspectral images
    Xu, Xia
    Shi, Zhenwei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 54 - 69