Effective phononic crystals for non-Cartesian elastic wave propagation

被引:13
|
作者
Arretche, Ignacio [1 ]
Matlack, Kathryn H. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Energy gap - Acoustic wave propagation - Elastic waves - Phonons - Wavefronts - Acoustics;
D O I
10.1103/PhysRevB.102.134308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phononic crystals show novel characteristics when it comes to acoustic and elastic wave propagation control. Nevertheless, most studies on phononic crystals are based on a plane wave assumption because this allows for application of Bloch theorem and analysis of the infinite system based on a single unit cell. However, the plane wave assumption is not valid in the near field of a source, where the wave front takes cylindrical or spherical form. Here, we overcome this limitation by introducing the concept of effective phononic crystals, which combine periodicity with varying isotropic material properties to force periodic coefficients in the elastic equations of motion in a non-Cartesian basis. The periodic coefficients allow for band structure calculation using Bloch theorem. Using the band structure, we demonstrate band gaps and topologically protected interface modes can be obtained for cylindrically propagating waves. Through effective phononic crystals, we show how behaviors of Cartesian phononic crystals can be realized in regions close to sources, where near-field effects are non-negligible.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 'P is true and non-Cartesian' is non-Cartesian
    Cook, Roy T.
    ANALYSIS, 2008, 68 (03) : 183 - 185
  • [2] Tuning flexural elastic wave propagation in electroactive phononic crystals
    Zhou, Xiaoling (zhouxiaoling87@163.com), 1600, American Institute of Physics Inc. (123):
  • [3] Tuning flexural elastic wave propagation in electroactive phononic crystals
    Zhou, Xiaoling
    Xu, Yanlong
    Wang, Longqi
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (22)
  • [4] Anisotropy of effective velocity for elastic wave propagation in two-dimensional phononic crystals at low frequencies
    Ni, Q
    Cheng, JC
    PHYSICAL REVIEW B, 2005, 72 (01)
  • [5] Propagation of elastic waves in phononic crystals
    I. V. Lisenkov
    S. A. Nikitov
    R. S. Popov
    Chul Koo Kim
    Journal of Communications Technology and Electronics, 2007, 52 : 1037 - 1048
  • [6] Propagation of elastic waves in phononic crystals
    Lisenkov, I. V.
    Nikitov, S. A.
    Popov, R. S.
    Kim, Chul Koo
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2007, 52 (09) : 1037 - 1048
  • [7] EFFECTIVE ELASTIC COEFFICIENTS FOR WAVE PROPAGATION IN STRAINED ELASTIC CRYSTALS
    THURSTON, RN
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1964, 36 (05): : 1041 - &
  • [8] Elastic wave propagation along waveguides in three-dimensional phononic crystals
    Chandra, H
    Deymier, PA
    Vasseur, JO
    PHYSICAL REVIEW B, 2004, 70 (05) : 054302 - 1
  • [9] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croënne, Charles
    Vasseur, Jérôme O.
    Bou Matar, Olivier
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    Journal of the Acoustical Society of America, 2016, 139 (06): : 3288 - 3295
  • [10] Control of elastic wave propagation in one-dimensional piezomagnetic phononic crystals
    Ponge, Marie-Fraise
    Croenne, Charles
    Vasseur, Jerome O.
    Matar, Olivier Bou
    Hladky-Hennion, Anne-Christine
    Dubus, Bertrand
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2016, 139 (06): : 3287 - 3294