Quantitative Microbial Ecology through Stable Isotope Probing

被引:197
作者
Hungate, Bruce A. [1 ,2 ]
Mau, Rebecca L. [1 ]
Schwartz, Egbert [1 ,2 ]
Caporaso, J. Gregory [1 ,2 ,3 ]
Dijkstra, Paul [1 ,2 ]
van Gestel, Natasja [1 ]
Koch, Benjamin J. [1 ]
Liu, Cindy M. [4 ,5 ]
McHugh, Theresa A. [1 ]
Marks, Jane C. [1 ,2 ]
Morrissey, Ember M. [1 ]
Price, Lance B. [4 ,6 ]
机构
[1] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
[2] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
[3] No Arizona Univ, Ctr Microbial Genet & Genom, Flagstaff, AZ 86011 USA
[4] Translat Genom Res Ctr, Flagstaff, AZ USA
[5] Johns Hopkins Sch Med, Dept Pathol, Baltimore, MD USA
[6] George Washington Univ, Milken Inst Sch Publ Hlth, Dept Environm & Occupat Hlth, Washington, DC USA
基金
美国国家科学基金会;
关键词
METHANOTROPHIC BACTERIA; METABOLIC-ACTIVITY; SOIL; IDENTIFICATION; POPULATIONS; CARBON; DNA; MICROORGANISMS; MECHANISMS; DIVERSITY;
D O I
10.1128/AEM.02280-15
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in O-18 and C-13 composition after exposure to [O-18] water or [C-13] glucose. The addition of glucose increased the assimilation of O-18 into DNA from [O-18] water. However, the increase in O-18 assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing.
引用
收藏
页码:7570 / 7581
页数:12
相关论文
共 69 条
[1]   Resuscitation of the rare boisphere contributes to pulses of ecosystem activity [J].
Aanderud, Zachary T. ;
Jones, Stuart E. ;
Fierer, Noah ;
Lennon, Jay T. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[2]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[3]   COMBINING BIOMARKER WITH STABLE ISOTOPE ANALYSES FOR ASSESSING THE TRANSFORMATION AND TURNOVER OF SOIL ORGANIC MATTER [J].
Amelung, W. ;
Brodowski, S. ;
Sandhage-Hofmann, A. ;
Bol, R. .
ADVANCES IN AGRONOMY, VOL 100, 2008, 100 :155-250
[4]  
[Anonymous], 2014, The R Foundation for Statistical Computing
[5]   Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS [J].
Behrens, Sebastian ;
Loesekann, Tina ;
Pett-Ridge, Jennifer ;
Weber, Peter K. ;
Ng, Wing-On ;
Stevenson, Bradley S. ;
Hutcheon, Ian D. ;
Relman, David A. ;
Spormann, Alfred M. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (10) :3143-3150
[6]   Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques [J].
Bernard, Laetitia ;
Mougel, Christophe ;
Maron, Pierre-Alain ;
Nowak, Virginie ;
Leveque, Jean ;
Henault, Catherine ;
Haichar, Feth el Zahar ;
Berge, Odile ;
Marol, Christine ;
Balesdent, Jerome ;
Gibiat, Frederic ;
Lemanceau, Philippe ;
Ranjard, Lionel .
ENVIRONMENTAL MICROBIOLOGY, 2007, 9 (03) :752-764
[7]   THE EFFECT OF THE ADDITION OF ORGANIC MATERIALS ON THE DECOMPOSITION OF AN ORGANIC SOIL [J].
BINGEMAN, CW ;
VARNER, JE ;
MARTIN, WP .
SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1953, 17 (01) :34-38
[8]   Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review [J].
Blagodatskaya, E. ;
Kuzyakov, Y. .
BIOLOGY AND FERTILITY OF SOILS, 2008, 45 (02) :115-131
[9]   Dynamics of 18O Incorporation from H 2 18 O into Soil Microbial DNA [J].
Blazewicz, Steven J. ;
Schwartz, Egbert .
MICROBIAL ECOLOGY, 2011, 61 (04) :911-916
[10]  
Bokulich N., 2015, PeerJ PrePrints, V3, pe1502