MULTI TISSUE MODELLING OF DIFFUSION MRI SIGNAL REVEALS VOLUME FRACTION BIAS

被引:0
作者
Frigo, Matteo [1 ]
Fick, Rutger H. J. [2 ]
Zucchelli, Mauro [1 ]
Deslauriers-Gauthier, Samuel [1 ]
Deriche, Rachid [1 ]
机构
[1] Univ Cote DAzur, Inria Sophia Antipolis Mediterranee, Athena Team, Nice, France
[2] Therapanacea, Paris, France
来源
2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020) | 2020年
基金
欧洲研究理事会;
关键词
Diffusion MRI; White Matter; Microstructure; Generalized Multi Tissue Modelling; DENSITY;
D O I
10.1109/isbi45749.2020.9098649
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper highlights a systematic bias in white matter tissue microstructure modelling via diffusion MRI that is due to the common, yet inaccurate, assumption that all brain tissues have a similar T-2 response. We show that the concept of "signal fraction" is more appropriate to describe what have always been referred to as "volume fraction". This dichotomy is described from the theoretical point of view by analysing the mathematical formulation of the diffusion MRI signal. We propose a generalized multi tissue modelling framework that allows to compute the actual volume fractions. The Dmipy implementation of this framework is then used to verify the presence of this bias in two classical tissue microstructure models computed on two subjects from the Human Connectome Project database. The proposed paradigm shift exposes the research field of brain tissue microstructure estimation to the necessity of a systematic review of the results obtained in the past that takes into account the difference between the concepts of volume fraction and signal fraction.
引用
收藏
页码:991 / 994
页数:4
相关论文
共 12 条
[1]   Orientationally invariant indices of axon diameter and density from diffusion MRI [J].
Alexander, Daniel C. ;
Hubbard, Penny L. ;
Hall, Matt G. ;
Moore, Elizabeth A. ;
Ptito, Maurice ;
Parker, Geoff J. M. ;
Dyrby, Tim B. .
NEUROIMAGE, 2010, 52 (04) :1374-1389
[2]   Modelling white matter with spherical deconvolution: How and why? [J].
Dell'Acqua, Flavio ;
Tournier, J. -Donald .
NMR IN BIOMEDICINE, 2019, 32 (04)
[3]  
Dhollander T., 2016, Proceedings of the International Society for Magnetic Resonance in Medicine, P3010
[4]   The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy [J].
Fick, Rutger H. J. ;
Wassermann, Demian ;
Deriche, Rachid .
FRONTIERS IN NEUROINFORMATICS, 2019, 13
[5]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[6]   The minimal preprocessing pipelines for the Human Connectome Project [J].
Glasser, Matthew F. ;
Sotiropoulos, Stamatios N. ;
Wilson, J. Anthony ;
Coalson, Timothy S. ;
Fischl, Bruce ;
Andersson, Jesper L. ;
Xu, Junqian ;
Jbabdi, Saad ;
Webster, Matthew ;
Polimeni, Jonathan R. ;
Van Essen, David C. ;
Jenkinson, Mark .
NEUROIMAGE, 2013, 80 :105-124
[7]   Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data [J].
Jeurissen, Ben ;
Tournier, Jacques-Donald ;
Dhollander, Thijs ;
Connelly, Alan ;
Sijbers, Jan .
NEUROIMAGE, 2014, 103 :411-426
[8]   TISSUE CHARACTERIZATION WITH T1, T2, AND PROTON DENSITY VALUES - RESULTS IN 160 PATIENTS WITH BRAIN-TUMORS [J].
JUST, M ;
THELEN, M .
RADIOLOGY, 1988, 169 (03) :779-785
[9]   Quantitative Mapping of the Per-Axon Diffusion Coefficients in Brain White Matter [J].
Kaden, Enrico ;
Kruggel, Frithjof ;
Alexander, Daniel C. .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (04) :1752-1763
[10]  
Powell M J D., 2007, Cambridge University Technical Report DAMTP, P12, DOI DOI 10.1108/13639519910299580