Bifurcations of limit cycles in a cubic system with cubic perturbations

被引:3
作者
Zang, Hong
Zhang, Tonghua [1 ]
Han, Maoan
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Curtin Univ Technol, Dept Chem Engn, Perth, WA 6845, Australia
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
澳大利亚研究理事会;
关键词
limit cycle; homoclinic loop; heteroclinic loop; Hamiltonian system;
D O I
10.1016/j.amc.2005.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with limit cycles on two different cubic systems with nine singular points. Eleven limit cycles are found and the distributions are studied by using the methods of bifurcation theory and qualitative analysis. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:341 / 358
页数:18
相关论文
共 18 条
[1]  
Bautin N., 1952, MAT SBORNIK, V72, P181
[2]   On the number of limit cycles in double homoclinic bifurcations [J].
Han, M ;
Chen, J .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09) :914-928
[3]   On the stability of double homoclinic and heteroclinic cycles [J].
Han, M ;
Hu, SC ;
Liu, XB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (05) :701-713
[4]  
HAN M, 2004, INT J BIFUR CHAOS, V14
[5]   Cyclicity of planar homoclinic loops and quadratic integrable systems [J].
Han, MA .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12) :1247-1258
[6]  
Han MA, 1999, J DIFFER EQUATIONS, V155, P245
[7]  
Han MA, 1999, SCI CHINA SER A, V42, P605
[8]   On Hopf cyclicity of planar systems [J].
Han, MA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 245 (02) :404-422
[9]   Bifurcations of limit cycles from quintic Hamiltonian systems with a double figure eight loop [J].
Hong, Z ;
Zhang, TH ;
Chen, WC .
JOURNAL OF COMPLEXITY, 2004, 20 (04) :544-560
[10]  
Li J., 1991, PUBL MAT, V35, P487