SEMISTABILITY OF LOGARITHMIC COTANGENT BUNDLE ON SOME PROJECTIVE MANIFOLDS

被引:1
作者
Chintapalli, Seshadri [1 ]
Iyer, Jaya N. N. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
Logarithmic Fano manifolds; Logarithmic cotangent bundle; Semistability; TANGENT-BUNDLES; STABILITY; THEOREM;
D O I
10.1080/00927872.2012.748785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we investigate the semistability of logarithmic de Rham sheaves on a smooth projective variety (X, D), under suitable conditions. This is related to existence of Kahler-Einstein metric on the open variety. We investigate this problem when the Picard number is one. Fix a normal crossing divisor D on X and consider the logarithmic de Rham sheaf (X)(logD) on X. We prove semistability of this sheaf, when the log canonical sheaf K-X+D is ample or trivial, or when -K-X-D is ample, i.e., when X is a log Fano n-fold of dimension n6. We also extend the semistability result for Kawamata coverings, and this gives examples whose Picard number can be greater than one.
引用
收藏
页码:1732 / 1746
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1992, Int. J. Math.
[2]  
[Anonymous], LECT NOTES MATH
[3]  
[Anonymous], 1987, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kahler-Einstein Metrics
[4]  
[Anonymous], 1954, Proc. Jap. Acad.
[5]  
[Anonymous], 2010, GEOMETRY MODULI SPAC, DOI DOI 10.1017/CBO9780511711985
[6]  
Aubin T., 1982, Monge-Ampere Equations, V252
[7]  
Bogomolov F., 1980, P INT C MATH HELS 19
[8]  
Deligne P., 1971, FRENCH I HAUTES ETUD, V40, P557
[9]   INFINITE DETERMINANTS, STABLE BUNDLES AND CURVATURE [J].
DONALDSON, SK .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :231-247
[10]  
Esnault H, 1992, LECT VANISHING THEOR, V20