Protein secondary structure prediction by using deep learning method

被引:52
|
作者
Wang, Yangxu [1 ]
Mao, Hua [1 ]
Yi, Zhang [1 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
基金
美国国家科学基金会;
关键词
Deep learning; Secondary structure prediction; Encoder-decoder networks; Recurrent neural networks; NETWORK;
D O I
10.1016/j.knosys.2016.11.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction of protein structures directly from amino acid sequences is one of the biggest challenges in computational biology. It can be divided into several independent sub-problems in which protein secondary structure (SS) prediction is fundamental. Many computational methods have been proposed for SS prediction problem. Few of them can model well both the sequence-structure mapping relationship between input protein features and SS, and the interaction relationship among residues which are both important for SS prediction. In this paper, we proposed a deep recurrent encoder-decoder networks called Secondary Structure Recurrent Encoder-Decoder Networks (SSREDNs) to solve this SS prediction problem. Deep architecture and recurrent structures are employed in the SSREDNs to model both the complex nonlinear mapping relationship between input protein features and SS, and the mutual interaction among continuous residues of the protein chain. A series of techniques are also used in this paper to refine the model's performance. The proposed model is applied to the open dataset CullPDB and CB513. Experimental results demonstrate that our method can improve both Q3 and Q8 accuracy compared with some public available methods. For Q8 prediction problem, it achieves 68.20% and 73.1% accuracy on CB513 and CullPDB dataset in fewer epochs better than the previous state-of-art method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] Protein Secondary Structure Prediction With a Reductive Deep Learning Method
    Lyu, Zhiliang
    Wang, Zhijin
    Luo, Fangfang
    Shuai, Jianwei
    Huang, Yandong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [2] A Deep Learning Approach for Prediction of Protein Secondary Structure
    Zubair, Muhammad
    Hanif, Muhammad Kashif
    Alabdulkreem, Eatedal
    Ghadi, Yazeed
    Khan, Muhammad Irfan
    Sarwar, Muhammad Umer
    Hanif, Ayesha
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3705 - 3718
  • [3] Protein Secondary Structure Prediction Based on Deep Learning
    Zheng, Lin
    Li, Hong-ling
    Wu, Nan
    Ao, Li
    3RD INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND INDUSTRIAL INFORMATICS, (ISMII 2017), 2017, : 171 - 177
  • [4] Protein secondary structure prediction using neural networks and deep learning: A review
    Wardah, Wafaa
    Khan, M. G. M.
    Sharma, Alok
    Rashid, Mahmood A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 81 : 1 - 8
  • [5] Protein secondary structure prediction with Bayesian learning method
    Wang, PL
    Zhang, D
    14TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, : 252 - 257
  • [6] Deep metric learning for accurate protein secondary structure prediction
    Yang, Wei
    Liu, Yang
    Xiao, Chunjing
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [7] Protein secondary structure prediction using machine learning
    Zhang, BF
    Chen, ZH
    Murphey, YL
    Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 532 - 537
  • [8] Protein Secondary Structure Prediction Using Machine Learning
    Saha, Sriparna
    Ekbal, Asif
    Sharma, Sidharth
    Bandyopadhyay, Sanghamitra
    Maulik, Ujjwal
    INTELLIGENT INFORMATICS, 2013, 182 : 57 - +
  • [9] DLBLS_SS: protein secondary structure prediction using deep learning and broad learning system
    Yuan, Lu
    Hu, Xiaopei
    Ma, Yuming
    Liu, Yihui
    RSC ADVANCES, 2022, 12 (52) : 33479 - 33487
  • [10] An evolutionary method for learning HMM structure: prediction of protein secondary structure
    Won, Kyoung-Jae
    Hamelryck, Thomas
    Pruegel-Bennett, Adam
    Krogh, Anders
    BMC BIOINFORMATICS, 2007, 8 (1)