Mathematical model for logarithmic scaling of velocity fluctuations in wall turbulence

被引:1
作者
Mouri, Hideaki [1 ]
机构
[1] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
关键词
HIGH REYNOLDS-NUMBER; BOUNDARY-LAYERS; ORDER MOMENTS; PIPE-FLOW; SMOOTH; LAW;
D O I
10.1103/PhysRevE.92.063003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For wall turbulence, moments of velocity fluctuations are known to be logarithmic functions of the height from the wall. This logarithmic scaling is due to the existence of a characteristic velocity and to the nonexistence of any characteristic height in the range of the scaling. By using the mathematics of random variables, we obtain its necessary and sufficient conditions. They are compared with characteristics of a phenomenological model of eddies attached to the wall and also with those of the logarithmic scaling of the mean velocity.
引用
收藏
页数:4
相关论文
共 25 条
[1]  
[Anonymous], 1977, The advanced theory of statistics
[2]  
[Anonymous], 1953, The theory of homogeneous turbulence
[3]  
Feller W., 1968, INTRO PROBABILITY TH
[4]   Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow [J].
Hultmark, M. ;
Vallikivi, M. ;
Bailey, S. C. C. ;
Smits, A. J. .
JOURNAL OF FLUID MECHANICS, 2013, 728 :376-395
[5]   Turbulent Pipe Flow at Extreme Reynolds Numbers [J].
Hultmark, M. ;
Vallikivi, M. ;
Bailey, S. C. C. ;
Smits, A. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (09)
[7]  
Izakson A., 1937, Technical Physics of the U.S.S.R, V2, P155
[8]   THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS [J].
KOLMOGOROV, AN .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890) :9-13
[9]   STRUCTURE OF TURBULENT BOUNDARY-LAYERS ON SMOOTH AND ROUGH WALLS [J].
KROGSTAD, PA ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1994, 277 :1-21
[10]  
Landau L. D., 1976, Mechanics