A framework for assessing uncertainties in simulation predictions

被引:23
作者
Hanson, KM [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
uncertainty analysis; error analysis; simulation code; validation; probabilistic network; model checking; adjoint differentiation;
D O I
10.1016/S0167-2789(99)00090-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A probabilistic framework is presented for assessing the uncertainties in simulation predictions that arise from model parameters derived from uncertain measurements. A probabilistic network facilitates both conceptualizing and computationally implementing an analysis of a large number of experiments in terms of many intrinsic models in a logically consistent manner. This approach permits one to improve one's knowledge about the underlying models at every level of the hierarchy of validation experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 37 条
[1]  
*AM I AER ASTR, 1998, G07798 AM I AER ASTR
[2]  
[Anonymous], 1996, NUMERICAL BAYESIAN M, DOI DOI 10.1007/978-1-4612-0717-7
[3]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[4]  
Bevington P., 2002, Data Reduction and Error Analysis for the Physical Sciences, V3rd ed.
[5]  
BURGERS G, 1996, ANN GEOPHYSICAE C, V14, P390
[6]  
DOSE V, 1998, MAXIMUM ENTROPY BAYE
[7]  
DRAPER D, 1995, J R STAT SOC B, V57, P49
[8]  
EADIE WT, 1971, STAT METHODS EXPT PH
[9]   A-POSTERIORI ERROR-BOUNDS AND GLOBAL ERROR CONTROL FOR APPROXIMATION OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ESTEP, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) :1-48
[10]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411