Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems

被引:62
|
作者
Wang, Haijin [1 ]
Shu, Chi-Wang [2 ]
Zhang, Qing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Implicit-explicit scheme; Convection-diffusion equation; Stability analysis; Error estimate; Energy method; SCALAR CONSERVATION-LAWS; RUNGE-KUTTA METHODS; EQUATIONS;
D O I
10.1016/j.amc.2015.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization schemes, for solving one-dimensional convection-diffusion equations with a nonlinear convection. Both Runge-Kutta and multi-step IMEX methods are considered. By the aid of the energy method, we show that the IMEX LDG schemes are unconditionally stable for the nonlinear problems, in the sense that the time-step tau is only required to be upper-bounded by a positive constant which depends on the flow velocity and the diffusion coefficient, but is independent of the mesh size h. We also give optimal error estimates for the IMEX LDG schemes, under the same temporal condition, if a monotone numerical flux is adopted for the convection. Numerical experiments are given to verify our main results. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 258
页数:22
相关论文
共 50 条
  • [31] Stability analysis and error estimates of local discontinuous Galerkin methods for convection–diffusion equations on overlapping meshes
    Jie Du
    Yang Yang
    Eric Chung
    BIT Numerical Mathematics, 2019, 59 : 853 - 876
  • [32] Local discontinuous Galerkin methods with explicit Runge-Kutta time marching for nonlinear carburizing model
    Xia, Chenghui
    Li, Ying
    Wang, Haijin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4376 - 4390
  • [33] Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    NUMERISCHE MATHEMATIK, 2011, 117 (02) : 251 - 288
  • [34] Local Discontinuous Galerkin Methods with Decoupled Implicit-Explicit Time Marching for the Growth-Mediated Autochemotactic Pattern Formation Model
    Wang, Hui
    Guo, Hui
    Zhang, Jiansong
    Tian, Lulu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (01) : 208 - 236
  • [35] OPTIMAL A POSTERIORI ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS IN ONE SPACE DIMENSION
    Baccouch, Mahboub
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2016, 34 (05) : 511 - 531
  • [36] Local Discontinuous Galerkin Method with Implicit-Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media
    Wang, Haijin
    Zheng, Jingjing
    Yu, Fan
    Guo, Hui
    Zhang, Qiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 1 - 28
  • [37] Stability analysis and error estimates of local discontinuous Galerkinmethods for convection-diffusion equations on overlapping meshes
    Du, Jie
    Yang, Yang
    Chung, Eric
    BIT NUMERICAL MATHEMATICS, 2019, 59 (04) : 853 - 876
  • [38] A Stable Discontinuous Galerkin Time-Domain Method With Implicit Explicit Time-Marching for Lossy Media
    Xiang, Ru
    Ma, Xikui
    Ma, Liang
    Chi, Mingjun
    Wang, Jiawei
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (12)
  • [39] COMPACT AND STABLE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    Brdar, S.
    Dedner, A.
    Kloefkorn, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01) : A263 - A282
  • [40] MULTISTAGE DISCONTINUOUS PETROV-GALERKIN TIME-MARCHING SCHEME FOR NONLINEAR PROBLEMS
    Munoz-Matute, Judit
    Demkowicz, Leszek
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (04) : 1956 - 1978