Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems

被引:65
作者
Wang, Haijin [1 ]
Shu, Chi-Wang [2 ]
Zhang, Qing [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; Implicit-explicit scheme; Convection-diffusion equation; Stability analysis; Error estimate; Energy method; SCALAR CONSERVATION-LAWS; RUNGE-KUTTA METHODS; EQUATIONS;
D O I
10.1016/j.amc.2015.02.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization schemes, for solving one-dimensional convection-diffusion equations with a nonlinear convection. Both Runge-Kutta and multi-step IMEX methods are considered. By the aid of the energy method, we show that the IMEX LDG schemes are unconditionally stable for the nonlinear problems, in the sense that the time-step tau is only required to be upper-bounded by a positive constant which depends on the flow velocity and the diffusion coefficient, but is independent of the mesh size h. We also give optimal error estimates for the IMEX LDG schemes, under the same temporal condition, if a monotone numerical flux is adopted for the convection. Numerical experiments are given to verify our main results. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 258
页数:22
相关论文
共 20 条
[1]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[2]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[3]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[4]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[5]   An a priori error analysis of the local discontinuous Galerkin method for elliptic problems [J].
Castillo, P ;
Cockburn, B ;
Perugia, I ;
Shötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) :1676-1706
[6]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[9]   ANALYSIS OF A LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR TIME-DEPENDENT FOURTH-ORDER PROBLEMS [J].
Dong, Bo ;
Shu, Chi-Wang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (05) :3240-3268
[10]   Stability and Convergence Analysis of Fully Discrete Fourier Collocation Spectral Method for 3-D Viscous Burgers' Equation [J].
Gottlieb, Sigal ;
Wang, Cheng .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 53 (01) :102-128