Adsorption capacity of H2O, NH3, CO, and NO2 on the pristine graphene

被引:109
作者
Lin, Xianqing [1 ,2 ]
Ni, Jun [1 ,2 ]
Fang, Chao [3 ]
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN;
D O I
10.1063/1.4776239
中图分类号
O59 [应用物理学];
学科分类号
摘要
First-principles together with statistical mechanics calculations have been performed to study the adsorption behavior of H2O, NH3, CO, and NO2 on the pristine graphene. In the first-principles calculations, we find that the most recent van der Waals (vdW) density functional vdW-DF2 gives even larger binding energies (E-b) that those obtained with the local density approximation, indicating vdW-DF2 may be inappropriate for describing the interaction between these molecules and graphene. With the potential energy curves of the molecules on graphene calculated by the density functional theory, the adsorption capacity (n) of the molecules on the pristine graphene is calculated with the statistical mechanics method. NO2 has the largest n of the order of 10(8) cm(-2) among the four molecules on graphene at room temperature and concentration of 1.0 ppm, but still smaller by almost two order than that on graphene devices estimated from the experimental results. This is probably due to the strong binding of NO2 to the graphene edges with terminating oxygen atoms with E-b as large as 1.0 eV. The calculations of the adsorption capacity of small polar molecules on the pristine graphene and comparison with the experimental values may contribute to the understanding of the mechanism and designing of graphene based gas sensors. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776239]
引用
收藏
页数:6
相关论文
共 23 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Doping graphene by adsorption of polar molecules at the oxidized zigzag edges [J].
Berashevich, Julia ;
Chakraborty, Tapash .
PHYSICAL REVIEW B, 2010, 81 (20)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[5]   Oxygen adsorption on graphite and nanotubes [J].
Giannozzi, P ;
Car, R ;
Scoles, G .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (03) :1003-1006
[6]   Van der Waals density functionals applied to solids [J].
Klimes, Jiri ;
Bowler, David R. ;
Michaelides, Angelos .
PHYSICAL REVIEW B, 2011, 83 (19)
[7]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[8]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[9]   Role of van der Waals interactions in adsorption of Xe on Cu(111) and Pt(111) [J].
Lazic, P ;
Crljen, Z ;
Brako, R ;
Gumhalter, B .
PHYSICAL REVIEW B, 2005, 72 (24)
[10]   Higher-accuracy van der Waals density functional [J].
Lee, Kyuho ;
Murray, Eamonn D. ;
Kong, Lingzhu ;
Lundqvist, Bengt I. ;
Langreth, David C. .
PHYSICAL REVIEW B, 2010, 82 (08)