The evaluation of Tomheim double sums, Part 1

被引:34
作者
Espinosa, O
Moll, VH [1 ]
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile
关键词
Hurwitz zeta function;
D O I
10.1016/j.jnt.2005.04.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function A(k)(q) k zeta'(1-k, q). (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 229
页数:30
相关论文
共 32 条
[11]  
CARLITZ L, 1959, J LOND MATH SOC, V34, P361, DOI DOI 10.1112/JLMS/S1-34.3.361
[12]  
CRANDALL R. E., 1994, Exp. Math., V3, P275
[13]   A generalized polygamma function [J].
Espinosa, O ;
Moll, VH .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (02) :101-115
[14]   On some integrals involving the Hurwitz zeta function: Part 1 [J].
Espinosa, O ;
Moll, VH .
RAMANUJAN JOURNAL, 2002, 6 (02) :159-188
[15]   On some integrals involving the Hurwitz zeta function: Part 2 [J].
Espinosa, O ;
Moll, VH .
RAMANUJAN JOURNAL, 2002, 6 (04) :449-468
[16]  
ESPINOSA O, UNPUB EVALUATION T 2
[17]  
Gosper RW., 1997, Fields Institute Commununication, P71
[18]   MULTIPLE HARMONIC SERIES [J].
HOFFMAN, ME .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (02) :275-290
[19]  
Huard JG, 1996, ACTA ARITH, V75, P105
[20]  
KREIMER D, 2000, CAMBRIDGE LECT NOTES