Machine Learning and Symbolic Learning for the Recognition of Leukemia L1, L2 and L3
被引:2
|
作者:
Ochoa-Montiel, Rocio
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Univ Autonoma Tlaxcala, Fac Ciencias Basicas Ingn & Tecnol, Apizaco, MexicoInst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Ochoa-Montiel, Rocio
[1
,2
]
Sossa, Humberto
论文数: 0引用数: 0
h-index: 0
机构:
Inst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Tecnol Monterrey, Escuela Ingn & Ciencias, Av Gen Ramon Corona, Zapopan 2514, Jalisco, MexicoInst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Sossa, Humberto
[1
,4
]
Olague, Gustavo
论文数: 0引用数: 0
h-index: 0
机构:
CICESE Res Ctr, EvoVis Lab, Ensenada, MexicoInst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Olague, Gustavo
[3
]
Sanchez-Lopez, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Tlaxcala, Fac Ciencias Basicas Ingn & Tecnol, Apizaco, MexicoInst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
Sanchez-Lopez, Carlos
[2
]
机构:
[1] Inst Politecn Nacl, Ctr Invest Comp, Av Juan de Dios Batiz & M Othon de Mendizabal, Mexico City 07738, Mexico
[2] Univ Autonoma Tlaxcala, Fac Ciencias Basicas Ingn & Tecnol, Apizaco, Mexico
[3] CICESE Res Ctr, EvoVis Lab, Ensenada, Mexico
[4] Tecnol Monterrey, Escuela Ingn & Ciencias, Av Gen Ramon Corona, Zapopan 2514, Jalisco, Mexico
Leukemia is a health problem that affects to world population causing thousands of kills yearly, thus accurate and human-readable diagnostic methods are required. Symbolic learning uses methods based on high-level representations of problems, which is useful to design interpretable models to understand the solutions found to solve a problem. In this work, we analyze the performance of 3 classifiers used frequently in machine learning, which are independently embedded into a model of symbolic learning named brain programming. Results suggest that the classifiers as MLP and SVM are robust to noisy data, with the MLP demonstrating the most stable behavior into the symbolic learning model, which is fundamental in models of evolutionary vision as the brain programming.
机构:
Educ Univ Hong Kong, Dept Linguist & Modern Language Studies, Taipo, 10 LoPing Rd, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Linguist & Modern Language Studies, Taipo, 10 LoPing Rd, Hong Kong, Peoples R China
Chen, Hsueh Chu
Han, Qian Wen
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Linguist & Translat, Hong Kong, Peoples R ChinaEduc Univ Hong Kong, Dept Linguist & Modern Language Studies, Taipo, 10 LoPing Rd, Hong Kong, Peoples R China
机构:
Utah State Univ, Languages Philospphy & Commun Studies, 0720 Old Main Hill, Logan, UT 84322 USAUtah State Univ, Languages Philospphy & Commun Studies, 0720 Old Main Hill, Logan, UT 84322 USA
Albirini, Abdulkafi
Saadah, Eman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Champaign, IL USAUtah State Univ, Languages Philospphy & Commun Studies, 0720 Old Main Hill, Logan, UT 84322 USA