Wavelength Assignment in Hybrid Quantum-Classical Networks

被引:46
作者
Bahrani, Sima [1 ,2 ]
Razavi, Mohsen [1 ]
Salehi, Jawad A. [2 ]
机构
[1] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[2] Sharif Univ Technol, Elect Engn Dept, Tehran, Iran
基金
英国工程与自然科学研究理事会;
关键词
KEY DISTRIBUTION; FIELD;
D O I
10.1038/s41598-018-21418-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optimal wavelength assignment in dense-wavelength-division-multiplexing (DWDM) systems that integrate both quantum and classical channels is studied. In such systems, weak quantum key distribution (QKD) signals travel alongside intense classical signals on the same fiber, where the former can be masked by the background noise induced by the latter. Here, we investigate how optimal wavelength assignment can mitigate this problem. We consider different DWDM structures and various sources of crosstalk and propose several near-optimal wavelength assignment methods that maximize the total secret key rate of the QKD channels. Our numerical results show that the optimum wavelength assignment pattern is commonly consisted of several interspersed quantum and classical bands. Using our proposed techniques, the total secret key rate of quantum channels can substantially be improved, as compared to conventional assignment methods, in the noise dominated regimes. Alternatively, we can maximize the number of QKD users supported under certain key rate constraints.
引用
收藏
页数:13
相关论文
共 26 条
[1]   Crosstalk reduction in hybrid quantum-classical networks [J].
Bahrani, S. ;
Razavi, M. ;
Salehi, J. A. .
SCIENTIA IRANICA, 2016, 23 (06) :2898-2907
[2]  
Bahrani S., 2016, SIGN PROC C EUSIPCO
[3]  
Bennett C.H., 1984, PROC IEEE INT C COMP, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[4]   Optical networking for quantum key distribution and quantum communications [J].
Chapuran, T. E. ;
Toliver, P. ;
Peters, N. A. ;
Jackel, J. ;
Goodman, M. S. ;
Runser, R. J. ;
McNown, S. R. ;
Dallmann, N. ;
Hughes, R. J. ;
McCabe, K. P. ;
Nordholt, J. E. ;
Peterson, C. G. ;
Tyagi, K. T. ;
Mercer, L. ;
Dardy, H. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[6]   Quantum key distribution and 1 Gbps data encryption over a single fibre [J].
Eraerds, P. ;
Walenta, N. ;
Legre, M. ;
Gisin, N. ;
Zbinden, H. .
NEW JOURNAL OF PHYSICS, 2010, 12
[7]  
Islam M. N., 2007, RAMAN AMPLIFIERS TEL
[8]   Coexistence of continuous variable QKD with intense DWDM classical channels [J].
Kumar, Rupesh ;
Qin, Hao ;
Alleaume, Romain .
NEW JOURNAL OF PHYSICS, 2015, 17
[9]   Satellite-to-ground quantum key distribution [J].
Liao, Sheng-Kai ;
Cai, Wen-Qi ;
Liu, Wei-Yue ;
Zhang, Liang ;
Li, Yang ;
Ren, Ji-Gang ;
Yin, Juan ;
Shen, Qi ;
Cao, Yuan ;
Li, Zheng-Ping ;
Li, Feng-Zhi ;
Chen, Xia-Wei ;
Sun, Li-Hua ;
Jia, Jian-Jun ;
Wu, Jin-Cai ;
Jiang, Xiao-Jun ;
Wang, Jian-Feng ;
Huang, Yong-Mei ;
Wang, Qiang ;
Zhou, Yi-Lin ;
Deng, Lei ;
Xi, Tao ;
Ma, Lu ;
Hu, Tai ;
Zhang, Qiang ;
Chen, Yu-Ao ;
Liu, Nai-Le ;
Wang, Xiang-Bin ;
Zhu, Zhen-Cai ;
Lu, Chao-Yang ;
Shu, Rong ;
Peng, Cheng-Zhi ;
Wang, Jian-Yu ;
Pan, Jian-Wei .
NATURE, 2017, 549 (7670) :43-+
[10]   Decoy state quantum key distribution [J].
Lo, HK ;
Ma, XF ;
Chen, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)