Adapting the CSM-CROPGRO model for pigeonpea using sequential parameter estimation

被引:17
作者
Alderman, Phillip D. [1 ,2 ]
Boote, Kenneth J. [1 ]
Jones, James W. [3 ]
Bhatia, Virender S. [4 ]
机构
[1] Univ Florida, Dept Agron, Gainesville, FL 32611 USA
[2] Int Maize & Wheat Improvement Ctr, Mexico City 06600, DF, Mexico
[3] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
[4] Natl Res Ctr Soybean, Indore, Madhya Pradesh, India
关键词
Pigeonpea; Crop model; Parameter estimation; CROPGRO; DSSAT-CSM; Growth analysis; 3 GRAIN LEGUMES; PREDICTING GROWTH; CORRESPONDENCE TEMPERATURE; ACCUMULATION; UNCERTAINTY; YIELD;
D O I
10.1016/j.fcr.2015.05.024
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Pigeonpea (Cajanus cajan (L) Millsp.) is an important crop in Asia, Africa, Latin America and Caribbean. Despite pigeonpea's global importance there is a dearth of crop simulation models available for studying pigeonpea growth. The objectives of this study were to adapt the CSM-CROPGRO model for simulating pigeonpea growth and development through parameter modification and to illustrate the use of a sequential parameter estimation technique using a dataset from Gainesville, FL in 1984 and a dataset from India in 2003. The sequential approach to parameter estimation using a hybrid Metropolis-Hastings-Gibbs algorithm worked well at estimating physiologically plausible values for parameters with good correspondence to measured data. Reasonable results were obtained despite the use of approximations for measurement errors for the Gainesville dataset, which contained only treatment means. This study demonstrated that CROPGRO can be used to simulate the growth and development of pigeonpea. However, further testing of CROPGRO with more extensive pigeonpea datasets should be undertaken to confirm the accuracy of the parameter estimates developed from this study. Further theoretical and practical research into the parameter estimation approach is needed. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 2013, FAOSTAT data
[2]  
Asseng S, 2013, NAT CLIM CHANGE, V3, P827, DOI [10.1038/nclimate1916, 10.1038/NCLIMATE1916]
[3]   CORRESPONDENCE: Temperature and drought effects on maize yield [J].
Basso, Bruno ;
Ritchie, Joe .
NATURE CLIMATE CHANGE, 2014, 4 (04) :233-233
[4]   How do various maize crop models vary in their responses to climate change factors? [J].
Bassu, Simona ;
Brisson, Nadine ;
Durand, Jean-Louis ;
Boote, Kenneth ;
Lizaso, Jon ;
Jones, James W. ;
Rosenzweig, Cynthia ;
Ruane, Alex C. ;
Adam, Myriam ;
Baron, Christian ;
Basso, Bruno ;
Biernath, Christian ;
Boogaard, Hendrik ;
Conijn, Sjaak ;
Corbeels, Marc ;
Deryng, Delphine ;
De Sanctis, Giacomo ;
Gayler, Sebastian ;
Grassini, Patricio ;
Hatfield, Jerry ;
Hoek, Steven ;
Izaurralde, Cesar ;
Jongschaap, Raymond ;
Kemanian, Armen R. ;
Kersebaum, K. Christian ;
Kim, Soo-Hyung ;
Kumar, Naresh S. ;
Makowski, David ;
Mueller, Christoph ;
Nendel, Claas ;
Priesack, Eckart ;
Pravia, Maria Virginia ;
Sau, Federico ;
Shcherbak, Iurii ;
Tao, Fulu ;
Teixeira, Edmar ;
Timlin, Dennis ;
Waha, Katharina .
GLOBAL CHANGE BIOLOGY, 2014, 20 (07) :2301-2320
[5]   Developing, parameterizing, and testing of dynamic crop growth models for horticultural crops [J].
Boote, K. J. ;
Scholberg, J. M. S. .
PROCEEDINGS OF THE IIIRD INTERNATIONAL SYMPOSIUM ON MODELS FOR PLANT GROWTH, ENVIRONMENTAL CONTROL AND FARM MANAGEMENT IN PROTECTED CULTIVATION, 2006, (718) :23-+
[6]  
Boote K. J., 1998, Agricultural systems modeling and simulation., P651
[7]  
Boote KJ, 2002, AGRON J, V94, P743
[8]  
Boote KJ, 1998, SYST APPR S, V7, P99
[9]  
Brakke M.P., 1984, THESIS U FLORIDA GAI
[10]   Predicting growth and development of pigeonpea: flowering response to photoperiod [J].
Carberry, PS ;
Ranganathan, R ;
Reddy, LJ ;
Chauhan, YS ;
Robertson, MJ .
FIELD CROPS RESEARCH, 2001, 69 (02) :151-162