Reproducibility of graph measures at the subject level using resting-state fMRI

被引:18
|
作者
Ran, Qian [1 ,2 ]
Jamoulle, Tarik [1 ]
Schaeverbeke, Jolien [1 ,3 ]
Meersmans, Karen [1 ]
Vandenberghe, Rik [1 ,3 ,4 ]
Dupont, Patrick [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Lab Cognit Neurol, Dept Neurosci, Herestr 49 Bus 1027, B-3000 Leuven, Belgium
[2] Xinqiao Hosp, Dept Radiol, Chongqing, Peoples R China
[3] Katholieke Univ Leuven, Alzheimer Res Ctr, Leuven Brain Inst, Leuven, Belgium
[4] Univ Hosp Leuven UZ Leuven, Neurol Dept, Leuven, Belgium
来源
BRAIN AND BEHAVIOR | 2020年 / 10卷 / 08期
关键词
denoising; graph measures; network construction; reproducibility; resting-state fMRI; test-retest variability; TEST-RETEST RELIABILITY; FUNCTIONAL CONNECTIVITY; BRAIN NETWORKS; MOTION ARTIFACT; CONFOUND REGRESSION; ALZHEIMERS-DISEASE; GLOBAL SIGNAL; PARCELLATION; CORTEX; SCHIZOPHRENIA;
D O I
10.1002/brb3.1705
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Introduction Graph metrics have been proposed as potential biomarkers for diagnosis in clinical work. However, before it can be applied in a clinical setting, their reproducibility should be evaluated. Methods This study systematically investigated the effect of two denoising pipelines and different whole-brain network constructions on reproducibility of subject-specific graph measures. We used the multi-session fMRI dataset from the Brain Genomics Superstruct Project consisting of 69 healthy young adults. Results In binary networks, the test-retest variability for global measures was large at low density irrespective of the denoising strategy or the type of correlation. Weighted networks showed very low test-retest values (and thus a good reproducibility) for global graph measures irrespective of the strategy used. Comparing the test-retest values for different strategies, there were significant main effects of the type of correlation (Pearson correlation vs. partial correlation), the (partial) correlation value (absolute vs. positive vs. negative), and weight calculation (based on the raw (partial) correlation values vs. based on transformedZ-values). There was also a significant interaction effect between type of correlation and weight calculation. Similarly as for the binary networks, there was no main effect of the denoising pipeline. Conclusion Our results demonstrated that normalized global graph measures based on a weighted network using the absolute (partial) correlation as weight were reproducible. The denoising pipeline and the granularity of the whole-brain parcellation used to define the nodes were not critical for the reproducibility of normalized graph measures.
引用
收藏
页码:2336 / 2351
页数:16
相关论文
共 50 条
  • [21] Changes in resting-state fMRI in vestibular neuritis
    Helmchen, Christoph
    Ye, Zheng
    Sprenger, Andreas
    Munte, Thomas F.
    BRAIN STRUCTURE & FUNCTION, 2014, 219 (06) : 1889 - 1900
  • [22] Evaluating the sensitivity of functional connectivity measures to motion artifact in resting-state fMRI data
    Mahadevan, Arun S.
    Tooley, Ursula A.
    Bertolero, Maxwell A.
    Mackey, Allyson P.
    Bassett, Danielle S.
    NEUROIMAGE, 2021, 241
  • [23] Prediction of individual brain age using movie and resting-state fMRI
    Bi, Suyu
    Guan, Yun
    Tian, Lixia
    CEREBRAL CORTEX, 2024, 34 (01)
  • [24] Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI
    Eavani, Harini
    Satterthwaite, Theodore D.
    Filipovych, Roman
    Gur, Raquel E.
    Gur, Ruben C.
    Davatzikos, Christos
    NEUROIMAGE, 2015, 105 : 286 - 299
  • [25] Predictive value of resting-state fMRI graph measures in hypoxic encephalopathy after cardiac arrest
    Lange, Puck
    Verhulst, Marlous
    Tuladhar, Anil Man
    Tewarie, Prejaas
    Keijzer, Hanneke
    Klijn, Catharina J. M.
    Hoedemaekers, Cornelia
    Blans, Michiel
    Tonino, Bart
    Meijer, Frederick J. A.
    Helmich, Rick C.
    Hofmeijer, Jeannette
    NEUROIMAGE-CLINICAL, 2025, 46
  • [26] ENIGMA ' s simple seven: Recommendations to enhance the reproducibility of resting-state fMRI in traumatic brain injury
    Caeyenberghs, Karen
    Imms, Phoebe
    Irimia, Andrei
    Monti, Martin M.
    Esopenko, Carrie
    de Souza, Nicola L.
    Dominguez, D. Juan F.
    Newsome, Mary R.
    Dobryakova, Ekaterina
    Cwiek, Andrew
    Mullin, Hollie A. C.
    Kim, Nicholas J.
    Mayer, Andrew R.
    Adamson, Maheen M.
    Bickart, Kevin
    Breedlove, Katherine M.
    Dennis, Emily L.
    Disner, Seth G.
    Haswell, Courtney
    Hodges, Cooper B.
    Hoskinson, Kristen R.
    Johnson, Paula K.
    Konigs, Marsh
    Li, Lucia M.
    Liebel, Spencer W.
    Livny, Abigail
    Morey, Rajendra A.
    Muir, Alexandra M.
    Olsen, Alexander
    Razi, Adeel
    Su, Matthew
    Tate, David F.
    Velez, Carmen
    Wilde, Elisabeth A.
    Zielinski, Brandon A.
    Thompson, Paul M.
    Hillary, Frank G.
    NEUROIMAGE-CLINICAL, 2024, 42
  • [27] Vigilance Effects in Resting-State fMRI
    Liu, Thomas T.
    Falahpour, Maryam
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [28] High-level Integrative Networks: A Resting-state fMRI Investigation of Reading and Spelling
    Ellenblum, Gali
    Purcell, Jeremy J.
    Song, Xiaowei
    Rapp, Brenda
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2019, 31 (07) : 961 - 977
  • [29] Resting-state fMRI confounds and cleanup
    Murphy, Kevin
    Birn, Rasmus M.
    Bandettini, Peter A.
    NEUROIMAGE, 2013, 80 : 349 - 359
  • [30] Lag structure in resting-state fMRI
    Mitra, A.
    Snyder, A. Z.
    Hacker, C. D.
    Raichle, M. E.
    JOURNAL OF NEUROPHYSIOLOGY, 2014, 111 (11) : 2374 - 2391