Intertwining relations of non-stationary Schrodinger operators

被引:29
作者
Cannata, F
Ioffe, M
Junker, G
Nishnianidze, D
机构
[1] Univ Bologna, Dipartmento Fis, I-40126 Bologna, Italy
[2] St Petersburg State Univ, Dept Theoret Phys, St Petersburg 198904, Russia
[3] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 19期
关键词
D O I
10.1088/0305-4470/32/19/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General first- and higher-order intertwining relations between non-stationary one-dimensional Schrodinger operators are introduced. For the first-order case it is shown that the intertwining relations imply some hidden symmetry which in turn results in an R-separation of variables. The Fokker-Planck and diffusion equations are briefly considered. Second-order intertwining operators are also discussed within a general approach. However, due to its complicated structure only particular solutions are given in some detail.
引用
收藏
页码:3583 / 3598
页数:16
相关论文
共 29 条
[1]  
ANDRIANOV A, 1997, SPBUIP9724
[2]  
ANDRIANOV A, 1998, INT J MOD PHYS A
[3]   POLYNOMIAL SUSY IN QUANTUM-MECHANICS AND 2ND DERIVATIVE DARBOUX TRANSFORMATIONS [J].
ANDRIANOV, AA ;
IOFFE, MV ;
NISHNIANIDZE, DN .
PHYSICS LETTERS A, 1995, 201 (2-3) :103-110
[4]   2ND-ORDER DERIVATIVE SUPERSYMMETRY, Q-DEFORMATIONS AND THE SCATTERING PROBLEM [J].
ANDRIANOV, AA ;
IOFFE, MV ;
CANNATA, F ;
DEDONDER, JP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (18) :2683-2702
[5]   Matrix Hamiltonians: SUSY approach to hidden symmetries [J].
Andrianov, AA ;
Cannata, F ;
Ioffe, MV ;
Nishnianidze, DN .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (14) :5037-5050
[6]   SUPERSYMMETRIC ORIGIN OF EQUIVALENT QUANTUM-SYSTEMS [J].
ANDRIANOV, AA ;
BORISOV, NV ;
EIDES, MI ;
IOFFE, MV .
PHYSICS LETTERS A, 1985, 109 (04) :143-148
[7]   THE FACTORIZATION METHOD AND QUANTUM-SYSTEMS WITH EQUIVALENT ENERGY-SPECTRA [J].
ANDRIANOV, AA ;
BORISOV, NV ;
IOFFE, MV .
PHYSICS LETTERS A, 1984, 105 (1-2) :19-22
[8]   HIGHER-DERIVATIVE SUPERSYMMETRY AND THE WITTEN INDEX [J].
ANDRIANOV, AA ;
IOFFE, MV ;
SPIRIDONOV, VP .
PHYSICS LETTERS A, 1993, 174 (04) :273-279
[9]   Polynomial supersymmetry and dynamical symmetries in quantum mechanics [J].
Andrianov, AA ;
Ioffe, MV ;
Nishnianidze, DN .
THEORETICAL AND MATHEMATICAL PHYSICS, 1995, 104 (03) :1129-1140
[10]   Darboux transformation of the Schrodinger equation [J].
Bagrov, VG ;
Samsonov, BF .
PHYSICS OF PARTICLES AND NUCLEI, 1997, 28 (04) :374-397