Two splitting positive definite mixed finite element methods for parabolic integro-differential equations

被引:8
作者
Guo, Hui [1 ]
Zhang, Jiansong [1 ]
Fu, Hongfei [1 ]
机构
[1] China Univ Petr, Sch Math & Computat Sci, Dongying 257061, Peoples R China
基金
中国国家自然科学基金;
关键词
Mixed finite element; Independent symmetric positive definite; Convergence analysis; FLOWS; SUPERCONVERGENCE; APPROXIMATIONS; HETEROGENEITY; TRANSPORT;
D O I
10.1016/j.amc.2012.05.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two novel mixed finite element procedures are established for parabolic integro-differential equations, which can be split into two independent symmetric positive definite sub-schemes and do not need to solve a coupled system of equations without requiring the LBB consistency condition. The convergence analysis shows that both methods lead to the optimal order L-2(Omega) norm error estimate for u and optimal H(div;Omega) norm error estimate for sigma. A numerical example is presented to illustrate the theoretical analysis. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:11255 / 11268
页数:14
相关论文
共 21 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
Allegretto W, 1999, DYN CONTIN DISCRET I, V5, P209
[3]  
[Anonymous], 2001, ACTA MATH U COMENIAN
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[7]   NONLOCAL REACTIVE TRANSPORT WITH PHYSICAL AND CHEMICAL HETEROGENEITY - LOCALIZATION ERRORS [J].
CUSHMAN, JH ;
HU, BX ;
DENG, FW .
WATER RESOURCES RESEARCH, 1995, 31 (09) :2219-2237
[9]  
Ewing R, 2000, NUMER METH PART D E, V16, P285, DOI 10.1002/(SICI)1098-2426(200005)16:3<285::AID-NUM2>3.0.CO
[10]  
2-3