On comparison principles for the periodic Hill's equation

被引:15
作者
Cabada, Alberto [1 ]
Angel Cid, J. [2 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[2] Univ Vigo, Dept Matemat, Higher Tech Sch Comp Engn, Orense 32004, Spain
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2012年 / 86卷
关键词
2ND-ORDER DIFFERENTIAL-EQUATIONS; BOUNDARY-VALUE-PROBLEMS; ANTI-MAXIMUM PRINCIPLE; BEAM FOCUSING SYSTEM; P-LAPLACIAN; EXISTENCE; SIGN;
D O I
10.1112/jlms/jds001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Moreover, we obtain new explicit criteria that ensures that the maximum or anti-maximum principle holds for this equation. The given criteria complement previous results in the literature.
引用
收藏
页码:272 / 290
页数:19
相关论文
共 30 条
[1]  
[Anonymous], 2001, INTRO APPL
[2]   Maximum and anti-maximum principles for the general operator of second order with variable coefficients [J].
Barteneva, IV ;
Cabada, A ;
Ignatyev, AO .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 134 (01) :173-184
[3]  
Bevc V., 1958, J BRIT I RADIO ENG, V18, P696
[4]   THE METHOD OF LOWER AND UPPER SOLUTIONS FOR 2ND, 3RD, 4TH, AND HIGHER-ORDER BOUNDARY-VALUE-PROBLEMS [J].
CABADA, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 185 (02) :302-320
[5]   On the sign of the Green's function associated to Hill's equation with an indefinite potential [J].
Cabada, Alberto ;
Cid, Jose Angel .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) :303-308
[6]   Existence and Multiplicity of Solutions for a Periodic Hill's Equation with Parametric Dependence and Singularities [J].
Cabada, Alberto ;
Angel Cid, Jose .
ABSTRACT AND APPLIED ANALYSIS, 2011,
[7]   A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential [J].
Cabada, Alberto ;
Cid, Jose Angel ;
Tvrdy, Milan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (7-8) :3436-3446
[8]  
De Coster C., 2006, Two-Point Boundary Value Problems
[9]  
Ding T., 2004, Applications of Qualitative Methods of Ordinary Differential Equations
[10]  
Ding T., 1965, ACTA SCI NATUR U PEK, V11, P31