STRONG SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS WITH ROUGH COEFFICIENTS

被引:16
作者
Champagnat, Nicolas [1 ,2 ]
Jabin, Pierre-Emmanuel [3 ,4 ]
机构
[1] Univ Lorraine, CNRS, Inst Elie Cartan Lorraine, UMR 7502, Site Nancy,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] INRIA Nancy Grand Est, Team TOSCA, F-54600 Vandoeuvre Les Nancy, France
[3] Univ Maryland, CSCAMM, College Pk, MD 20742 USA
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Stochastic differential equations; strong solutions; pathwise uniqueness; Fokker-Planck equation; rough drift; rough diffusion matrix; degenerate diffusion matrix; kinetic stochastic differential equations; maximal operator; CONTINUOUS LOCAL MARTINGALES; EXPLICIT FORMULAS; WELL-POSEDNESS; SDES; UNIQUENESS; DEGENERATE; EXISTENCE; FLOWS; TIME;
D O I
10.1214/17-AOP1208
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study strong existence and pathwise uniqueness for stochastic differential equations in R-d with rough coefficients, and without assuming uniform ellipticity for the diffusion matrix. Our approach relies on direct quantitative estimates on solutions to the SDE, assuming Sobolev bounds on the drift and diffusion coefficients, and L-p bounds for the solution of the corresponding Fokker-Planck PDE, which can be proved separately. This allows a great flexibility regarding the method employed to obtain these last bounds. Hence we are able to obtain general criteria in various cases, including the uniformly elliptic case in any dimension, the one-dimensional case and the Langevin (kinetic) case.
引用
收藏
页码:1498 / 1541
页数:44
相关论文
共 40 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]  
[Anonymous], 1963, Vestnik Leningrad. Univ.
[4]   Well Posedness in any Dimension for Hamiltonian Flows with Non BV Force Terms [J].
Champagnat, Nicolas ;
Jabin, Pierre-Emmanuel .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (05) :786-816
[5]   Estimates and regularity results for the DiPerna-Lions flow [J].
Crippa, Gianluca ;
De Lellis, Camillo .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 616 :15-46
[6]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[7]  
ENGELBERT H. J., 2000, GEORGIAN MATH J, V7, P643
[8]   STRONG MARKOV CONTINUOUS LOCAL MARTINGALES AND SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATIONS .3. [J].
ENGELBERT, HJ ;
SCHMIDT, W .
MATHEMATISCHE NACHRICHTEN, 1991, 151 :149-197
[9]   STRONG MARKOV CONTINUOUS LOCAL MARTINGALES AND SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATIONS .1. [J].
ENGELBERT, HJ ;
SCHMIDT, W .
MATHEMATISCHE NACHRICHTEN, 1989, 143 :167-184
[10]   STRONG MARKOV CONTINUOUS LOCAL MARTINGALES AND SOLUTIONS OF ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL-EQUATIONS .2. [J].
ENGELBERT, HJ ;
SCHMIDT, W .
MATHEMATISCHE NACHRICHTEN, 1989, 144 :241-281