Effects of vacuum infusion processing parameters on the impact behavior of carbon fiber reinforced cyclic butylene terephthalate composites

被引:10
作者
Agirregomezkorta, A. [1 ]
Sanchez-Soto, M. [2 ]
Aretxaga, G. [1 ]
Sarrionandia, M. [1 ]
Aurrekoetxea, J. [1 ]
机构
[1] Mondragon Unibertsitatea, Dept Mech & Ind Prod, Arrasate Mondragon 20500, Spain
[2] Univ Politecn Cataluna, Dept Ciencia Dels Mat & Eng Met, Ctr Catala Plast, E-08028 Barcelona, Spain
关键词
Cyclic butylene terephthalate; thermoplastic resin; carbon fiber; thermoplastic resin transfer molding; impact behavior; IN-SITU POLYMERIZATION; EPOXY; PERFORMANCE; OLIGOMERS; MATRIX; RESIN;
D O I
10.1177/0021998312472218
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon fiber reinforced cyclic butylene terephthalate composites have been processed by vacuum infusion under two different non-isothermal processing routes starting from a one-component cyclic butylene terephthalate resin system. One of them was processed under a short cycle with fast cooling, and another one was processed under a long cycle with slow cooling. Both the micro-structure and low-energy impact properties of the composites have been investigated. On one hand, the fast cooling generates randomly dispersed voids and porosities in the resin-rich regions during the crystallization-induced shrinkage. On the other hand, the slow cooling generates a highly crystalline and brittle matrix without porosity. However, many micro-cracks appear in the resin-rich regions due to the combination of the brittleness and longitudinal shrinkage of the matrix. The critical delamination energy of the slow cooled composite is slightly higher than that of the fast cooled one, whereas this latter absorbs over 25% more energy before being penetrated, as well as performing in a less brittle way. The lower interlaminar shear strength of the fast cooled composite is suggested to be the origin of its higher energy absorbing capability and less brittle behavior.
引用
收藏
页码:333 / 344
页数:12
相关论文
共 29 条
[1]  
ABRATE S., 1991, Applied Mechanics Reviews, V44, P155, DOI [DOI 10.1115/1.3119500, 10.1115/1.3119500]
[2]   Toughening of in situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin [J].
Abt, Tobias ;
Sanchez-Soto, Miguel ;
Martinez de Ilarduya, Antxon .
EUROPEAN POLYMER JOURNAL, 2012, 48 (01) :163-171
[3]   Toughening of in situ polymerized cyclic butylene terephthalate by addition of tetrahydrofuran [J].
Abt, Tobias ;
Sanchez-Soto, Miguel ;
Illescas, Silvia ;
Aurrekoetxea, Jon ;
Sarrionandia, Mariasun .
POLYMER INTERNATIONAL, 2011, 60 (04) :549-556
[4]   Impact behaviour of carbon fibre reinforced epoxy and non-isothermal cyclic butylene terephthalate composites manufactured by vacuum infusion [J].
Agirregomezkorta, A. ;
Martinez, A. B. ;
Sanchez-Soto, M. ;
Aretxaga, G. ;
Sarrionandia, M. ;
Aurrekoetxea, J. .
COMPOSITES PART B-ENGINEERING, 2012, 43 (05) :2249-2256
[5]  
Agirregomezkorta A, 2008, P C SEMAT08 SAN SEB
[6]   An experimental investigation of the impact response of composite laminates [J].
Aktas, Mehmet ;
Atas, Cesim ;
Icten, Buelent Murat ;
Karakuzu, Ramazan .
COMPOSITE STRUCTURES, 2009, 87 (04) :307-313
[7]   Low-energy dynamic indentation method for analysis of ophthalmic materials [J].
Artus, Pau ;
Dursteler, Juan C. ;
Martinez, Antonio B. .
OPTOMETRY AND VISION SCIENCE, 2008, 85 (01) :49-53
[8]   EFFECT OF FIBER-MATRIX INTERFACE STRENGTH ON IMPACT AND FRACTURE PROPERTIES OF CARBON-FIBER-REINFORCED EPOXY RESIN COMPOSITES [J].
BADER, MG ;
BAILEY, JE ;
BELL, I .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1973, 6 (05) :572-&
[9]   Toughening of Basalt Fiber-Reinforced Composites with a Cyclic Butylene Terephthalate Matrix by a Nonisothermal Production Method [J].
Baets, J. ;
Devaux, J. ;
Verpoest, I. .
ADVANCES IN POLYMER TECHNOLOGY, 2010, 29 (02) :70-79
[10]   Toughening of isothermally polymerized cyclic butylene terephthalate for use in composites [J].
Baets, J. ;
Godara, A. ;
Devaux, J. ;
Verpoest, I. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (03) :346-352