Schottky barrier formation in liquid-phase-sintered silicon carbide

被引:13
|
作者
Kleebe, HJ [1 ]
Siegelin, F
机构
[1] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA
[2] Univ Bayreuth, Inst Mat Res, Bayreuth, Germany
来源
ZEITSCHRIFT FUR METALLKUNDE | 2003年 / 94卷 / 03期
关键词
silicon carbide; electron microscopy; interfaces; electrical resistivity; Schottky barrier;
D O I
10.3139/146.030211
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Liquid-phase-sintered SiC materials, all doped with 3 vol.% YAG (Y3Al5O12) and sintered under identical conditions but processed in different furnaces (laboratory vs. industrial furnaces), revealed a variation in electrical resistivity of five orders of magnitude (10(2) vs. 10(7) Omegacm). It was expected that, due to different cooling rates, different interface structures had evolved that strongly affected electrical resistivity, i.e., changes in intergranular film chemistry and corresponding thickness. In order to verify this hypothesis, the materials were characterized employing various techniques. High-resolution transmission electron microscopy of SiC interfaces revealed an unexpected result: clean interfaces for all samples. Elemental analysis confirmed yttrium and aluminum segregation at grain boundaries. Electron holography and Fresnel-fringe imaging revealed a change in mean inner potential across SiC interfaces. It is concluded that the segregation of acceptor ions at interfaces lowers the grain-boundary Fermi energy, resulting in the formation of potential barriers (Schottky barriers) along SiC interfaces, which in turn strongly affect electrical resistivity of SiC polycrystals.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [1] Densification of liquid-phase-sintered silicon carbide
    Pujar, VV
    Jensen, RP
    Padture, NP
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (11) : 1011 - 1014
  • [2] Microstructural analysis of liquid-phase-sintered β-silicon carbide
    Zhan, GD
    Ikuhara, Y
    Mitomo, M
    Xie, RJ
    Sakuma, T
    Mukherjee, AK
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2002, 85 (02) : 430 - 436
  • [3] The AC conductivity of liquid-phase-sintered silicon carbide
    Sauti, Godfrey
    Can, Antoinette
    McLachlan, David S.
    Herrmann, Mathias
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (08) : 2446 - 2453
  • [4] Effect of weight loss on liquid-phase-sintered silicon carbide
    Grande, T
    Sommerset, H
    Hagen, E
    Wiik, K
    Einarsrud, MA
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1997, 80 (04) : 1047 - 1052
  • [5] Core/rim structure of liquid-phase-sintered silicon carbide
    Sigl, Lorenz S.
    Kleebe, Hans-Joachim
    Journal of the American Ceramic Society, 1993, 76 (03): : 773 - 776
  • [6] CORE RIM STRUCTURE OF LIQUID-PHASE-SINTERED SILICON-CARBIDE
    SIGL, LS
    KLEEBE, HJ
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (03) : 773 - 776
  • [7] Possible Strategies for Microstructure Control of Liquid-Phase-Sintered Silicon Carbide Ceramics
    Chun, Yong-Seong
    Kim, Young-Wook
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2005, 42 (08) : 542 - 547
  • [8] Influence of annealing treatments on microstructure and toughness of liquid-phase-sintered silicon carbide
    D. Sciti
    A. Bellosi
    Journal of Materials Research, 2001, 16 : 806 - 816
  • [9] Correlation between microstructure and creep behavior in liquid-phase-sintered α-silicon carbide
    Castillo-Rodríguez, M
    Muñoz, A
    Domínguez-Rodríguez, A
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (03) : 960 - 967
  • [10] Influence of annealing treatments on microstructure and toughness of liquid-phase-sintered silicon carbide
    Sciti, D
    Bellosi, A
    JOURNAL OF MATERIALS RESEARCH, 2001, 16 (03) : 806 - 816