False-positive Reduction of Liver Tumor Detection Using Ensemble Learning Method

被引:0
|
作者
Miyamoto, Atsushi [1 ]
Miyakoshi, Junichi [1 ]
Matsuzaki, Kazuki [1 ]
Irie, Toshiyuki
机构
[1] Hitachi Ltd, Cent Res Lab, Tokyo, Japan
来源
关键词
Liver tumor detection; false-positive reduction; pattern recognition; ensemble learning; Bagging; AdaBoost; adaptive sampling;
D O I
10.1117/12.2006329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We proposed a novel ensemble learning method which can be applied to false-positive reduction of liver tumor detection. In many cases of the liver tumor detection, training data has some issues due to characteristics of liver tumors, and the conventional ensemble learning methods such as Bagging and AdaBoost tend to degrade sensitivity. The proposed method generates various weak classifiers based on adaptive sampling in order to enhance an ensemble effect against such issues, and can achieve accuracy satisfying requirements of liver tumor detection. We applied the method to 48 CT images and evaluated the accuracy. Results showed that the proposed method succeeded in reducing false positives greatly (from 3.96 to 1.10/image) while maintaining the required sensitivity.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] FALSE-POSITIVE LIVER SCAN DUE TO BREAST PROSTHESIS
    MILDER, MS
    LARSON, SM
    SWANN, SJ
    JOHNSTON, GS
    JOURNAL OF NUCLEAR MEDICINE, 1973, 14 (03) : 189 - 189
  • [32] FALSE-POSITIVE LIVER SCAN IN A PATIENT WITH HEPATIC AMYLOIDOSIS
    SUZUKI, K
    OKUDA, K
    YOSHIDA, T
    KANDA, Y
    JOURNAL OF NUCLEAR MEDICINE, 1976, 17 (01) : 31 - 32
  • [33] FALSE-POSITIVE LIVER SCAN DUE TO LUNG ABSCESS
    GENANT, HK
    HOFFER, PB
    JOURNAL OF NUCLEAR MEDICINE, 1972, 13 (12) : 945 - &
  • [34] Combining Multiple Feature Representations and AdaBoost Ensemble Learning for Reducing False-Positive Detections in Computer-aided Detection of Masses on Mammograms
    Choi, Jae Young
    Kim, Dae Hoe
    Plataniotis, Konstantinos N.
    Ro, Yong Man
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 4394 - 4397
  • [35] THE FALSE-POSITIVE TUMOR-MARKER IN MALIGNANT-TUMOR OF THE TESTIS
    BUSSARMAATZ, R
    WEISSBACH, L
    DAHLMANN, N
    MANN, K
    UROLOGE-AUSGABE A, 1993, 32 (03): : 177 - 182
  • [36] On Generalizable Low False-Positive Learning Using Asymmetric Support Vector Machines
    Wu, Shan-Hung
    Lin, Keng-Pei
    Chien, Hao-Heng
    Chen, Chung-Min
    Chen, Ming-Syan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (05) : 1083 - 1096
  • [37] REDUCE FALSE-POSITIVE RATE BY ACTIVE LEARNING FOR AUTOMATIC POLYP DETECTION IN COLONOSCOPY VIDEOS
    Guo, Zhe
    Zhang, Ruiyao
    Li, Qin
    Liu, Xinkai
    Nemoto, Daiki
    Togashi, Kazutomo
    Niroshana, Isuru S. M.
    Shi, Yuchen
    Zhu, Xin
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1655 - 1658
  • [38] The Role of Atmospheric Exchange in False-Positive Biosignature Detection
    Felton, Ryan C.
    Bastelberger, Sandra T.
    Mandt, Kathleen E.
    Luspay-Kuti, Adrienn
    Fauchez, Thomas J.
    Domagal-Goldman, Shawn D.
    arXiv, 2022,
  • [39] Robust shape estimation with false-positive contact detection
    Shibata, Kazuki
    Miyano, Tatsuya
    Jimbo, Tomohiko
    Matsubara, Takamitsu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 129
  • [40] The Role of Atmospheric Exchange in False-Positive Biosignature Detection
    Felton, Ryan C.
    Bastelberger, Sandra T.
    Mandt, Kathleen E.
    Luspay-Kuti, Adrienn
    Fauchez, Thomas J.
    Domagal-Goldman, Shawn D.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (03)