Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains

被引:57
作者
Brzezniak, Z. [1 ]
Caraballo, T. [2 ]
Langa, J. A. [2 ]
Li, Y. [3 ]
Lukaszewicz, G. [4 ]
Real, J. [2 ]
机构
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Seville, Dpto Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
[3] Huazhong Univ Sci & Technol, Informat Engn & Simulat Ctr, Wuhan 430074, Peoples R China
[4] Univ Warsaw, Inst Appl Math & Mech, PL-02097 Warsaw, Poland
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Random attractors; Energy method; Asymptotically compact random dynamical systems; Stochastic Navier-Stokes; Unbounded domains; PULLBACK ATTRACTORS; GLOBAL ATTRACTOR; STOKES EQUATIONS; EXISTENCE; FLOW;
D O I
10.1016/j.jde.2013.07.043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the stochastic flow generated by the 2-dimensional Stochastic Navier-Stokes equations with rough noise on a Poincare-like domain has a unique random attractor. One of the technical problems associated with the rough noise is overcomed by the use of the corresponding Cameron-Martin (or reproducing kernel Hilbert) space. Our results complement the result by Brzezniak and Li (2006) [10] who showed that the corresponding flow is asymptotically compact and also generalize Caraballo et al. (2006) [12] who proved existence of a unique attractor for the time-dependent deterministic Navier-Stokes equations. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:3897 / 3919
页数:23
相关论文
共 37 条
[1]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR EVOLUTION-EQUATIONS ON UNBOUNDED-DOMAINS [J].
ABERGEL, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :85-108
[2]  
[Anonymous], STOCHASTICS MONOGR
[3]  
[Anonymous], 2002, LECT NOTES MATH
[4]  
Arnold L, 1998, Random dynamical systems
[5]   Random attractors for stochastic reaction-diffusion equations on unbounded domains [J].
Bates, Peter W. ;
Lu, Kening ;
Wang, Bixiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) :845-869
[6]   Attractors for Stochastic lattice dynamical systems [J].
Bates, PW ;
Lisei, H ;
Lu, KN .
STOCHASTICS AND DYNAMICS, 2006, 6 (01) :1-21
[7]  
Brze~zniak Z., 2006, STOCHASTIC PARTIAL D, V245, P35
[8]  
Brzeniak Z., 2008, OBERWOLFACH REP, V5, P2823
[9]   Asymptotic behaviour of solutions to the 2D stochastic Navier-Stokes equations in unbounded domains - New developments [J].
Brzezniak, Z ;
Li, YH .
RECENT DEVELOPMENTS IN STOCHASTIC ANALYSIS AND RELATED TOPICS, 2004, :78-111
[10]   PATHWISE GLOBAL ATTRACTORS FOR STATIONARY RANDOM DYNAMIC-SYSTEMS [J].
BRZEZNIAK, Z ;
CAPINSKI, M ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :87-102