Optimal Size of Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy under Different Conditions

被引:166
|
作者
Hong, Seongmin [1 ]
Li, Xiao [1 ]
机构
[1] Univ S Florida, Dept Chem, Tampa, FL 33620 USA
关键词
METAL NANOPARTICLES; PLASMON RESONANCE; AU NANOPARTICLES; SCATTERING; SERS; SUBSTRATE;
D O I
10.1155/2013/790323
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Gold nanoparticles have been used as effective surface-enhanced Raman spectroscopy (SERS) substrates for decades. However, the origin of the enhancement and the effect of the size of nanoparticles still need clarification. Here, gold nanoparticles with different sizes from17 to 80nm were synthesized and characterized, and their SERS enhancement toward both 4-aminothiophenol and 4-nitrothiophenol was examined. For the same number of nanoparticles, the enhancement factor generated from the gold nanoparticles increases as the size of nanoparticles increases. Interestingly, when the concentration of gold or the total surface area of gold nanoparticles was kept the same, the optimal size of gold nanoparticles was found out to be around 50nm when the enhancement factor reached a maximum. The same size effect was observed for both 4-aminothiophenol and 4-nitrothiophenol, which suggests that the conclusions drawn in this study might also be applicable to other adsorbates during SERS measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface-Enhanced Raman Spectroscopy (SERS) Cellular Imaging of Intracellulary Biosynthesized Gold Nanoparticles
    Lahr, Rebecca Halvorson
    Vikesland, Peter J.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (07): : 1599 - 1608
  • [22] Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy
    Taylor, Jack
    Huefner, Anna
    Li, Li
    Wingfield, Jonathan
    Mahajan, Sumeet
    ANALYST, 2016, 141 (17) : 5037 - 5055
  • [23] Indium Nanoparticles for Ultraviolet Surface-Enhanced Raman Spectroscopy
    Das, Rupali
    Soni, R. K.
    2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2017), 2018, 1953
  • [24] Shape and Size Control of Substrate-Grown Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy Detection of Chemical Analytes
    Ashley, Michael J.
    Bourgeois, Marc R.
    Murthy, Raghavendra R.
    Laramy, Christine R.
    Ross, Michael B.
    Naik, Rajesh R.
    Schatz, George C.
    Mirkin, Chad A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (04): : 2307 - 2314
  • [25] Electrochemically roughened gold microelectrode for surface-enhanced Raman spectroscopy
    Wang, Wei
    Huang, Yi-Fan
    Liu, Dong-Yu
    Wang, Fang-Fang
    Tian, Zhong-Qun
    Zhan, Dongping
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2016, 779 : 126 - 130
  • [26] In Vitro biosynthesis of gold nanotriangles for Surface-Enhanced Raman spectroscopy
    Iosin, M.
    Toderas, F.
    Baldeck, P.
    Astilean, S.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (09): : 2285 - 2288
  • [27] Surface-enhanced Raman scattering spectroscopy via gold nanostars
    Esenturk, E. Nalbant
    Walker, A. R. Hight
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (01) : 86 - 91
  • [28] Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering
    Aldosari, Fahad M. M.
    MOLECULES, 2022, 27 (03):
  • [29] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [30] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1