Observable and reproducible rogue waves

被引:17
作者
Calini, A. [1 ,2 ]
Schober, C. M. [3 ]
机构
[1] Coll Charleston, Dept Math, Charleston, SC 29424 USA
[2] Natl Sci Fdn, Arlington, VA 22230 USA
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
extreme waves; nonlinear Schrodinger equation; stability of multi-mode breathers; NONLINEAR SCHRODINGER-EQUATION; DEEP-WATER; DYNAMICS; NLS;
D O I
10.1088/2040-8978/15/10/105201
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In physical regimes described by the cubic, focusing, nonlinear Schrodinger (NLS) equation, the N-dimensional homoclinic orbits of a constant amplitude wave with N unstable modes appear to be good candidates for experimentally observable and reproducible rogue waves. These homoclinic solutions include the Akhmediev breathers (N = 1), which are among the most widely adopted spatially periodic models of rogue waves, and their multi-mode generalizations (N > 1), and will be referred to as multi-mode breathers. Numerical simulations and a linear stability analysis indicate that the breathers with a maximal number of modes (maximal breathers) are robust with respect to rather general perturbations of the initial data in a neighborhood of the unstable background.
引用
收藏
页数:9
相关论文
共 18 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   Modulated periodic Stokes waves in deep water [J].
Ablowitz, MJ ;
Hammack, J ;
Henderson, D ;
Schober, CM .
PHYSICAL REVIEW LETTERS, 2000, 84 (05) :887-890
[3]   Extreme waves that appear from nowhere: On the nature of rogue waves [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICS LETTERS A, 2009, 373 (25) :2137-2145
[4]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[5]  
Ankiewicz A., 2010, J PHYS, V43, P9
[6]   PROPAGATION OF NONLINEAR WAVE ENVELOPES [J].
BENNEY, DJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICS AND PHYSICS, 1967, 46 (02) :133-&
[7]   Homoclinic chaos increases the likelihood of rogue wave formation [J].
Calini, A ;
Schober, CM .
PHYSICS LETTERS A, 2002, 298 (5-6) :335-349
[8]  
Calini A, 2008, EXTREME OCEAN WAVES, P31, DOI 10.1007/978-1-4020-8314-3_2
[9]   Note on breather type solutions of the NLS as models for freak-waves [J].
Dysthe, KB ;
Trulsen, K .
PHYSICA SCRIPTA, 1999, T82 :48-52
[10]   GEOMETRY OF THE MODULATIONAL INSTABILITY .3. HOMOCLINIC ORBITS FOR THE PERIODIC SINE-GORDON EQUATION [J].
ERCOLANI, N ;
FOREST, MG ;
MCLAUGHLIN, DW .
PHYSICA D-NONLINEAR PHENOMENA, 1990, 43 (2-3) :349-384