Rent's rule and extensibility in quantum computing

被引:53
作者
Franke, D. P. [1 ,2 ]
Clarke, J. S. [3 ]
Vandersypen, L. M. K. [1 ,2 ,3 ]
Veldhorst, M. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[3] Intel Corp, Components Res, 2501 NE Century Blvd, Hillsboro, OR 97124 USA
关键词
ION-TRAP; ERROR-CORRECTION; INFORMATION; SUPREMACY; CIRCUITS; QUBIT;
D O I
10.1016/j.micpro.2019.02.006
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Quantum computing is on the verge of a transition from fundamental research to practical applications. Yet, to make the step to large-scale quantum computation, an extensible qubit system has to be developed. In classical semiconductor technology, this was made possible by the invention of the integrated circuit, which allowed to interconnect large numbers of components without having to solder to each and every one of them. Similarly, we expect that the scaling of interconnections and control lines with the number of qubits will be a central bottleneck in creating large-scale quantum technology. Here, we define the quantum Rent exponent p to quantify the progress in overcoming this challenge at different levels throughout the quantum computing stack. We further discuss the concept of quantum extensibility as an indicator of a platform's potential to reach the large quantum volume needed for universal quantum computing and review extensibility limits faced by different qubit implementations on the way towards truly large-scale qubit systems. (C) 2019 Published by Elsevier B.V.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 65 条
  • [1] Almudever CG, 2017, DES AUT TEST EUROPE, P836, DOI 10.23919/DATE.2017.7927104
  • [2] [Anonymous], 2018, INT ADV QUANT NEUR C
  • [3] Independent, extensible control of same-frequency superconducting qubits by selective broadcasting
    Asaad, Serwan
    Dickel, Christian
    Langford, Nathan K.
    Poletto, Stefano
    Bruno, Alessandro
    Rol, Michiel Adriaan
    Deurloo, Duije
    DiCarlo, Leonardo
    [J]. NPJ QUANTUM INFORMATION, 2016, 2
  • [4] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [5] Bishop L.S., 2017, Quantum
  • [6] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [7] Single-qubit-gate error below 10-4 in a trapped ion
    Brown, K. R.
    Wilson, A. C.
    Colombe, Y.
    Ospelkaus, C.
    Meier, A. M.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    [J]. PHYSICAL REVIEW A, 2011, 84 (03):
  • [8] Chen Jianxin, 2018, ARXIV180501450QUANTP
  • [9] The interpretation and application of Rent's rule
    Christie, P
    Stroobandt, D
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2000, 8 (06) : 639 - 648
  • [10] Goals and opportunities in quantum simulation
    Cirac, J. Ignacio
    Zoller, Peter
    [J]. NATURE PHYSICS, 2012, 8 (04) : 264 - 266