ENERGY-DEPENDENT FRACTIONAL STURM-LIOUVILLE IMPULSIVE PROBLEM

被引:0
作者
Metin Turk, Funda [1 ]
Bas, Erdal [2 ]
机构
[1] Bartin Univ, Dept Math, Fac Sci, Bartin, Turkey
[2] Firat Univ, Dept Math, Fac Sci, Firat, Turkey
来源
THERMAL SCIENCE | 2019年 / 23卷
关键词
Sturm-Liouville problem; energy dependent; fractional; impulsive condition; Caputo derivative; EXISTENCE;
D O I
10.2298/TSCI171017338M
中图分类号
O414.1 [热力学];
学科分类号
摘要
In study, we show the existence and integral representation of solution for energy-dependent fractional Sturm-Liouville impulsive problem of order with alpha is an element of (1,2] impulsive and boundary conditions. An existence theorem is proved for energy-dependent fractional Sturm-Liouville impulsive problem by using Schaefer fixed point theorem. Furthermore, in the last part of the article, an application is given for the problem and visual results are shown by figures.
引用
收藏
页码:S139 / S152
页数:14
相关论文
共 28 条
[1]  
Agarwal RP, 2008, MEM DIFFER EQU MATH, V44, P1
[2]   EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER [J].
Ahmad, Bashir ;
Nieto, Juan J. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :981-993
[3]  
[Anonymous], P 13 INT CARP CONTR
[4]  
Baleanu D., 2011, FRACTIONAL DYNAMICS, DOI 10.1007/978-1-4614-0457-6
[5]   AN APPLICATION OF COMPARISON CRITERIA TO FRACTIONAL SPECTRAL PROBLEM HAVING COULOMB POTENTIAL [J].
Bas, Erdal ;
Metin Turk, Funda .
THERMAL SCIENCE, 2018, 22 :S79-S85
[6]   Fractional singular Sturm-Liouville operator for Coulomb potential [J].
Bas, Erdal ;
Metin, Funda .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[7]   Fundamental Spectral Theory of Fractional Singular Sturm-Liouville Operator [J].
Bas, Erdal .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[8]   A SOLUTION METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF CONFORMABLE FRACTIONAL DERIVATIVE [J].
Bayram, Mustafa ;
Hatipoglu, Veysel Fuat ;
Alkan, Sertan ;
Das, Sebahat Ebru .
THERMAL SCIENCE, 2018, 22 :S7-S14
[9]   The fractional Sturm-Liouville problem-Numerical approximation and application in fractional diffusion [J].
Ciesielski, Mariusz ;
Klimek, Malgorzata ;
Blaszczyk, Tomasz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :573-588
[10]  
Dehghan M, 2017, ARXIV171209891V1