On a recursive construction of Dirichlet form on the Sierpinski gasket

被引:5
作者
Gu, Qingsong [1 ]
Lau, Ka-Sing [1 ,2 ]
Qiu, Hua [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15217 USA
[3] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
关键词
Dirichlet form; Eigenvalue distribution; Energy; Harmonic functions; Resistance; Sierpinski gasket; SELF-SIMILAR ENERGIES; BROWNIAN-MOTION; DIFFUSIONS; UNIQUENESS; EXISTENCE;
D O I
10.1016/j.jmaa.2019.01.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma(n) denote the n-th level Sierpiriski graph of the Sierpiriski gasket K. We consider, for any given conductance (a(0), b(0), c(0)) on Gamma(0), the Dirichlet form epsilon on K obtained from a recursive construction of compatible sequence of conductances (a(n), b(n), c(n)) or Gamma(n), n >= 0. We prove that there is a dichotomy situation: either a(0) = b(0) = c(0) and epsilon is the standard Dirichlet form, or a(0) > b(0) = c(0) (or the two symmetric alternatives), and epsilon is a non-self-similar Dirichlet form independent of a(0), b(0). The second situation has been studied in [13,9] as a one-dimensional asymptotic diffusion. The analytic approach here is more direct and yields sharper results; in particular, for the spectral property, we give a precise estimate of the eigenvalue distribution of the associated Laplacian, which improves a similar result in [9]. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:674 / 692
页数:19
相关论文
共 29 条
[1]  
[Anonymous], STUDIES MATH
[2]  
[Anonymous], 1980, LOND MATH SOC MONOGR
[3]  
Barlow M.T., 1998, LECT NOTES MATH, V1690, P1
[4]   Uniqueness of Brownian motion on Sierpinski carpets [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi ;
Teplyaev, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) :655-701
[5]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[6]   Self-similar energy forms on the Sierpinski gasket with twists [J].
Cucuringu, Mihai ;
Strichartz, Robert S. .
POTENTIAL ANALYSIS, 2007, 27 (01) :45-60
[7]  
Fukushima M., 1992, POTENTIAL ANAL, V1, P1, DOI [10.1007/BF00249784, DOI 10.1007/BF00249784]
[8]   Heat kernels on metric measure spaces and an application to semilinear elliptic equations [J].
Grigor'yan, A ;
Hu, JX ;
Lau, KS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) :2065-2095
[9]  
Gu Q., ARXIV170307061
[10]  
Hambly B., ARXIV161202342