Topology optimization for maximizing the fracture resistance of quasi-brittle composites

被引:101
|
作者
Xia, Liang [1 ,2 ]
Da, Daicong [2 ,3 ]
Yvonnet, Julien [2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Univ Paris Est, Lab Modelisat & Simulat Multi Echelle MSME, UMR CNRS 8208, 5 Bd Descartes, F-77454 Marne La Vallee, France
[3] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fracture resistance; Topology optimization; BESO; Phase field method; Crack propagation; FIBER-REINFORCED COMPOSITES; PHASE-FIELD MODELS; CONTINUUM STRUCTURES; NONLINEAR STRUCTURES; CRACK-PROPAGATION; FAILURE CRITERIA; DESIGN; SHAPE; INITIATION; MESH;
D O I
10.1016/j.cma.2017.12.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose a numerical framework for optimizing the fracture resistance of quasi-brittle composites through a modification of the topology of the inclusion phase. The phase field method to fracturing is adopted within a regularized description of discontinuities, allowing to take into account cracking in regular meshes, which is highly advantageous for topology optimization purpose. Extended bi-directional evolutionary structural optimization (BESO) method is employed and formulated to find the optimal distribution of inclusion phase, given a target volume fraction of inclusion and seeking a maximal fracture resistance. A computationally efficient adjoint sensitivity formulation is derived to account for the whole fracturing process, involving crack initiation, propagation and complete failure of the specimen. The effectiveness of developed framework is illustrated through a series of 2D and 3D benchmark tests. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:234 / 254
页数:21
相关论文
共 50 条
  • [41] Brittle and Quasi-Brittle Fracture of Geomaterials with Circular Hole in Nonuniform Compression
    Suknev, S. V.
    JOURNAL OF MINING SCIENCE, 2020, 56 (02) : 174 - 183
  • [42] BI-PARAMETRIC CRITERION APPLIED TO BRITTLE AND QUASI-BRITTLE FRACTURE
    ZHAO, YS
    ENGINEERING FRACTURE MECHANICS, 1994, 49 (01) : 133 - 141
  • [43] A micromorphic phase-field model for brittle and quasi-brittle fracture
    Ritukesh Bharali
    Fredrik Larsson
    Ralf Jänicke
    Computational Mechanics, 2024, 73 : 579 - 598
  • [44] Amicromorphic phase-field model for brittle and quasi-brittle fracture
    Bharali, Ritukesh
    Larsson, Fredrik
    Jaenicke, Ralf
    COMPUTATIONAL MECHANICS, 2024, 73 (03) : 579 - 598
  • [45] CRITICAL CRACK OPENING DISPLACEMENT IN QUASI-BRITTLE AND BRITTLE-FRACTURE
    SERENSEN, SV
    GIRENKO, VS
    DEINEGA, VA
    KIRYAN, VI
    AUTOMATIC WELDING USSR, 1975, 28 (02): : 1 - 5
  • [46] Brittle to Quasi-Brittle Transition
    Dusan Krajcinovic
    Sreten Mastilovic
    Milena Vujosevic
    Meccanica, 1998, 33 : 363 - 379
  • [47] Size effect and quasi-brittle fracture: the role of FPZ
    Xiaozhi Hu
    Kai Duan
    International Journal of Fracture, 2008, 154 : 3 - 14
  • [48] Brittle to Quasi-Brittle transition
    Krajcinovic, D
    Mastilovic, S
    Vujosevic, M
    MECCANICA, 1998, 33 (04) : 363 - 379
  • [49] Extending the theory of critical distances to quasi-brittle fracture
    Suknev, S. V.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2021, 114
  • [50] Experimental and Numerical Study of Quasi-Brittle Fracture of Rocks
    Kostandov, Yu. A.
    Makarov, P. V.
    Eremin, M. O.
    INTERNATIONAL CONFERENCE ON PHYSICAL MESOMECHANICS OF MULTILEVEL SYSTEMS 2014, 2014, 1623 : 303 - 306