Soot Formation from the Combustion of Biomass Pyrolysis Products and a Hydrocarbon Fuel, n-Decane: An Aerosol Time Of Flight Mass Spectrometer (ATOFMS) Study

被引:29
作者
Wilson, J. M. [1 ]
Baeza-Romero, M. T. [2 ]
Jones, J. M. [3 ]
Pourkashanian, M. [4 ]
Williams, A. [4 ]
Lea-Langton, A. R. [3 ]
Ross, A. B. [3 ]
Bartle, K. D. [3 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Castilla la Mancha, Escuela Ingn Ind Toledo, Toledo 45071, Spain
[3] Univ Leeds, Energy Res Inst, Leeds LS2 9JT, W Yorkshire, England
[4] Univ Leeds, Energy Technol & Innovat Initiat, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
SINGLE-PARTICLE CHARACTERIZATION; AROMATIC-HYDROCARBONS; HEAVY-DUTY; POLLUTANTS; EMISSIONS; WOOD; COAL; PAH;
D O I
10.1021/ef3019386
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper is concerned with an aerosol time-of-flight mass spectrometer (ATOFMS) study of soot formation from the combustion of proxies of biomass (eugenol, furfural) and a hydrocarbon fuel (n-decane). The objective of this work was to gain insight into the soot growth mechanism in the combustion of biomass by studying the combustion of single components of wood (eugenol lignin model and furfural cellulose model), and by comparison with soot composition from combustion of a hydrocarbon fuel whose soot-forming mechanism is better known. Liquid fuels were burned using a wick burner, and the products in the aerosol phase were examined using an ATOFMS. The reaction process for n-decane combustion was examined using an opposed flame simulation with Chemkin-Pro modeling. A comparison of the model output with experimental results for n-decane give information on the soot growth mechanism. The same main routes for soot formation were operative both in biomass proxies and in n-decane. The principal differences in the mechanism observed for eugenol and furfural versus n-decane are described. Mass spectral analysis indicated that a channel involving the propargyl radical is more important in furfural combustion than for the rest of the fuels. Eugenol mass spectrometry (MS) indicates the presence of the important HACA (hydrogen abstraction acetylene addition) route, producing large polycyclic aromatic hydrocarbons (PAHs). Moreover, this study gives evidence that not only lignin components contribute to soot formation in biomass combustion, but furfural, which is a cellulosic component, can also contribute, and the soot formation routes involved are different.
引用
收藏
页码:1668 / 1678
页数:11
相关论文
共 41 条
[1]   Production of monomeric phenols by thermochemical conversion of biomass: a review [J].
Amen-Chen, C ;
Pakdel, H ;
Roy, C .
BIORESOURCE TECHNOLOGY, 2001, 79 (03) :277-299
[2]   In Situ Study of Soot from the Combustion of a Biomass Pyrolysis Intermediate-Eugenol-and n-Decane Using Aerosol Time of Flight Mass Spectrometry [J].
Baeza-Romero, M. Teresa ;
Wilson, Jacqueline M. ;
Fitzpatrick, Emma M. ;
Jones, Jenny M. ;
Williams, Alan .
ENERGY & FUELS, 2010, 24 (01) :439-445
[3]   The combustion of droplets of liquid fuels and biomass particles [J].
Bartle, K. D. ;
Fitzpatrick, E. M. ;
Jones, J. M. ;
Kubacki, M. L. ;
Plant, R. ;
Pourkashanian, M. ;
Ross, A. B. ;
Williams, A. .
FUEL, 2011, 90 (03) :1113-1119
[4]   Online Laser Desorption-Multiphoton Postionization Mass Spectrometry of Individual Aerosol Particles: Molecular Source Indicators for Particles Emitted from Different Traffic-Related and Wood Combustion Sources [J].
Bente, Matthias ;
Sklorz, Martin ;
Streibel, Thorsten ;
Zimmermann, Ralf .
ANALYTICAL CHEMISTRY, 2008, 80 (23) :8991-9004
[5]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552
[6]  
Colket M.B., 1994, SOOT FORMATION COMBU, P442
[7]   BIOMASS BURNING IN THE TROPICS - IMPACT ON ATMOSPHERIC CHEMISTRY AND BIOGEOCHEMICAL CYCLES [J].
CRUTZEN, PJ ;
ANDREAE, MO .
SCIENCE, 1990, 250 (4988) :1669-1678
[8]   PYROLYTIC FRAGMENTATION MECHANISMS OF PHENOL AND CRESOLS [J].
CYPRES, R ;
BETTENS, B .
TETRAHEDRON, 1974, 30 (10) :1253-1260
[9]   Detailed modeling of the molecular growth process in aromatic and aliphatic premixed flames [J].
D'Anna, A ;
Violi, A .
ENERGY & FUELS, 2005, 19 (01) :79-86
[10]   Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53 [J].
Denissenko, MF ;
Pao, A ;
Tang, MS ;
Pfeifer, GP .
SCIENCE, 1996, 274 (5286) :430-432